All Chapter 1 Marks

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:30:00 Hrs
Total Marks : 32

    Answer All The Following Question:


    32 x 1 = 32
  1. If {(a, 8 ),(6, b)}represents an identity function, then the value of a and b are respectively

    (a)

    (8,6)

    (b)

    (8,8)

    (c)

    (6,8)

    (d)

    (6,6)

  2. Let f(x) = \(\sqrt { 1+x^{ 2 } } \) then

    (a)

    f(xy) = f(x).f(y)

    (b)

    f(xy) ≥ f(x).f(y)

    (c)

    f(xy) ≤ f(x).f(y)

    (d)

    None of these

  3. The function t which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined Fahrenheit degree is 95, then the value of  C \(t(C)=\frac { 9c }{ 5 } +32\) is ___________

    (a)

    37

    (b)

    39

    (c)

    35

    (d)

    36

  4. If f is constant function of value \(\frac { 1 }{ 10 } \), the value of f(1) + f(2) + ... + f(100) is _________

    (a)

    \(\frac { 1 }{ 100 } \)

    (b)

    100

    (c)

    \(\frac { 1 }{ 10 } \)

    (d)

    10

  5. If the HCF of 65 and 117 is expressible in the form of 65m - 117 , then the value of m is

    (a)

    4

    (b)

    2

    (c)

    1

    (d)

    3

  6. The next term of the sequence \(\frac { 3 }{ 16 } ,\frac { 1 }{ 8 } ,\frac { 1 }{ 12 } ,\frac { 1 }{ 18 } \), ..... is

    (a)

    \(\frac { 1 }{ 24 } \)

    (b)

    \(\frac { 1 }{ 27 } \)

    (c)

    \(\frac { 2 }{ 3 } \)

    (d)

    \(\frac { 1 }{ 81 } \)

  7. In the arithmetic series Sn = k + 2k + 3k +...+ 100, k is positive integer and k is a factor 100 then Sn is ____________

    (a)

    \(1000\frac { 10 }{ k } \)

    (b)

    \(5000\frac { 50 }{ k } \)

    (c)

    \(\frac { 1000 }{ k } +10\)

    (d)

    \(\frac { 5000 }{ k } +50\)

  8. Sum of infinite terms of G.P is 12 and the first term is 8. What is the fourth term of the G.P?

    (a)

    \(\frac { 8 }{ 27 } \)

    (b)

    \(\frac { 4 }{ 27 } \)

    (c)

    \(\frac { 8 }{ 20 } \)

    (d)

    \(\frac { 1 }{ 3 } \)

  9. The square root of \(\frac { 256{ x }^{ 8 }{ y }^{ 4 }{ z }^{ 10 } }{ 25{ x }^{ 6 }{ y }^{ 6 }{ z }^{ 6 } } \) is equal to

    (a)

    \(\frac { 16 }{ 5 } \left| \frac { { x }^{ 2 }{ z }^{ 4 } }{ { y }^{ 2 } } \right| \)

    (b)

    \(16\left| \frac { { y }^{ 2 } }{ { x }^{ 2 }{ z }^{ 4 } } \right| \)

    (c)

    \(\frac { 16 }{ 5 } \left| \frac { y }{ x{ z }^{ 2 } } \right| \)

    (d)

    \(\frac { 16 }{ 5 } \left| \frac { x{ z }^{ 2 } }{ y } \right| \)

  10. Graph of a linear equation is a ____________

    (a)

    straight line

    (b)

    circle

    (c)

    parabola

    (d)

    hyperbola

  11. If \(\frac { p }{ q } =a\) then \(\frac { { p }^{ 2 }+{ q }^{ 2 } }{ { p }^{ 2 }-{ q }^{ 2 } } \) ___________

    (a)

    \(\frac { { a }^{ 2 }+1 }{ { a }^{ 2 }-1 } \)

    (b)

    \(\frac { 1+{ a }^{ 2 } }{ 1-{ a }^{ 2 } } \)

    (c)

    \(\frac { 1-{ a }^{ 2 } }{ 1-{ +a }^{ 2 } } \)

    (d)

    \(\frac { { a }^{ 2 }-1 }{ { a }^{ 2 }+1 } \)

  12. If \(A=\left[ \begin{matrix} y & 0 \\ 3 & 4 \end{matrix} \right] \) and \(I=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \) then A= 16 for ___________

    (a)

    y = 4

    (b)

    y = 5

    (c)

    y = -4

    (d)

    y = 16

  13. In LMN, \(\angle\)L = 60o, \(\angle\)M = 50o. If LMN ~ PQR then the value of \(\angle\)R is

    (a)

    40o

    (b)

    70°

    (c)

    30°

    (d)

    110°

  14. If \(\triangle\)ABC is an isosceles triangle with \(\angle\)C = 90o and AC = 5 cm, then AB is

    (a)

    2.5 cm

    (b)

    5 cm

    (c)

    10 cm

    (d)

    \(5\sqrt { 2 } \)cm

  15. A line which intersects a circle at two distinct points is called ____________

    (a)

    Point of contact

    (b)

    secant

    (c)

    diameter

    (d)

    tangent

  16. In the given figure if OC = 9 cm and OB = 15 cm then OB + BD is equal to ____________

    (a)

    23 cm

    (b)

    24 cm

    (c)

    27 cm

    (d)

    30 cm

  17. The slope of the line which is perpendicular to a line joining the points (0, 0) and (– 8, 8) is

    (a)

    –1

    (b)

    1

    (c)

    \(\frac13\)

    (d)

    -8

  18. Consider four straight lines
    (i) l1 : 3y = 4x + 5
    (ii) l2 : 4y = 3x - 1
    (iii) l3 : 4y + 3x =7
    (iv) l4 : 4x + 3y = 2
    Which of the following statement is true?

    (a)

    l1 and l2 are perpendicular

    (b)

    l1 and l4 are parallel

    (c)

    l2 and l4 are perpendicular

    (d)

    l2 and l3 are parallel

  19. Find the equation of the line passing through the point (0, 4) and is parallel to 3x+5y+15 = 0 the line is ___________

    (a)

    3x+5y+15 = 0

    (b)

    3x+5y-20 = 0

    (c)

    2x+7y-20 = 0

    (d)

    4x+3y-15 = 0

  20. The y-intercept of the line 3x - 4y + 8 = 0 is ___________

    (a)

    \(-\frac { 8 }{ 3 } \)

    (b)

    \(\frac { 8 }{ 3 } \)

    (c)

    2

    (d)

    \(\frac { 1 }{ 2 } \)

  21. The value of \(si{ n }^{ 2 }\theta +\frac { 1 }{ 1+ta{ n }^{ 2 }\theta } \) is equal to

    (a)

     \(ta{ n }^{ 2 }\theta \)

    (b)

    1

    (c)

    \(cot^{ 2 }\theta \)

    (d)

    0

  22. If the ratio of the height of a tower and the length of its shadow is \(\sqrt{3}: 1\), then the angle of elevation of the sun has measure

    (a)

    45°

    (b)

    30°

    (c)

    90°

    (d)

    60°

  23. If cos A = \(\frac{4}{5}\), then the value of tan A is ___________

    (a)

    \(\frac{3}{5}\)

    (b)

    \(\frac{3}{4}\)

    (c)

    \(\frac{4}{3}\)

    (d)

    \(\frac{5}{3}\)

  24. The blanks of river are parallel. A swimmer starts from a point on one of the banks and swims in a straight line to the bank at 45o and reaches the opposite bank at a point 20 m, from the point opposite to the straight point. The breadth of the river is equal to ____________

    (a)

    12.12m

    (b)

    14.14m

    (c)

    1016.16m

    (d)

    18.18m

  25. If the radius of the base of a cone is tripled and the height is doubled then the volume is

    (a)

    made 6 times

    (b)

    made 18 times

    (c)

    made 12 times

    (d)

    unchanged

  26. A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm. Then, the volume of the frustum is

    (a)

    3328\(\pi\) cm3

    (b)

    3228\(\pi\) cm3

    (c)

    3240\(\pi\) cm3

    (d)

    3340\(\pi\) cm3

  27. The radius of base of a cone 5 cm and height is 12 cm. The slant height of the cone ___________

    (a)

    13 cm

    (b)

    17 cm

    (c)

    7 cm

    (d)

    60 cm

  28. A spherical steel ball is melted to make 8 new identical balls. Then the radius each new ball is how much times the radius of the original ball?

    (a)

    \(\frac { 1 }{ 3 } \)

    (b)

    \(\frac { 1 }{ 4 } \)

    (c)

    \(\frac { 1 }{ 2 } \)

    (d)

    \(\frac { 1 }{ 8 } \)

  29. The standard deviation of a data is 3. If each value is multiplied by 5 then the new variance is

    (a)

    3

    (b)

    15

    (c)

    5

    (d)

    225

  30. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is \(\frac{1}{9}\), then the number of tickets bought by Kamalam is

    (a)

    5

    (b)

    10

    (c)

    15

    (d)

    20

  31. In a competition containing two events A and B, the probability of winning the events A and B are \(\frac { 1 }{ 3 } \) and \(\frac { 1 }{ 4 } \) respectively and the probability if winning both events is ___________

    (a)

    \(\frac { 1 }{ 12 } \)

    (b)

    \(\frac { 5 }{ 12 } \)

    (c)

    \(\frac { 1 }{ 12 } \)

    (d)

    \(\frac { 7 }{ 12 } \)

  32. In one thousand lottery tickets, there are 50 prizes to be given. The probability of happenning of the event is ___________

    (a)

    1-q

    (b)

    q

    (c)

    \(\frac { q }{ 2 } \)

    (d)

    2q

*****************************************

Reviews & Comments about 10th Standard Mathematics English Medium All Chapter Book Back and Creative One Marks Questions 2020

Write your Comment