Free Online Test 1 Mark Questions 2020 - 2021 Part - Four

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:25:00 Hrs
Total Marks : 25

    Part A

    25 x 1 = 25
  1. Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B is

    (a)

    mn

    (b)

    nm

    (c)

    2mn-1

    (d)

    2mn

  2. If {(a, 8 ),(6, b)}represents an identity function, then the value of a and b are respectively

    (a)

    (8,6)

    (b)

    (8,8)

    (c)

    (6,8)

    (d)

    (6,6)

  3. If the order pairs (a, -1) and (5, b) belongs to {(x, y) | y = 2x + 3}, then a and b are __________

    (a)

    -13, 2

    (b)

    2, 13

    (c)

    2, -13

    (d)

    -2,13

  4. Given F1 = 1, F2 = 3 and Fn = Fn-1 + Fn-2 then F5 is

    (a)

    3

    (b)

    5

    (c)

    8

    (d)

    11

  5. The first term of an arithmetic progression is unity and the common difference is 4. Which of the following will be a term of this A.P.

    (a)

    4551

    (b)

    10091

    (c)

    7881

    (d)

    13531

  6. If 3 is the least prime factor of number 'a' and 7 is least prime factor of number 'b', then the least prime factor of a + b is ____________

    (a)

    a + b

    (b)

    2

    (c)

    5

    (d)

    10

  7. The square root of \(\frac { 256{ x }^{ 8 }{ y }^{ 4 }{ z }^{ 10 } }{ 25{ x }^{ 6 }{ y }^{ 6 }{ z }^{ 6 } } \) is equal to

    (a)

    \(\frac { 16 }{ 5 } \left| \frac { { x }^{ 2 }{ z }^{ 4 } }{ { y }^{ 2 } } \right| \)

    (b)

    \(16\left| \frac { { y }^{ 2 } }{ { x }^{ 2 }{ z }^{ 4 } } \right| \)

    (c)

    \(\frac { 16 }{ 5 } \left| \frac { y }{ x{ z }^{ 2 } } \right| \)

    (d)

    \(\frac { 16 }{ 5 } \left| \frac { x{ z }^{ 2 } }{ y } \right| \)

  8. Which of the following should be added to make x4 + 64 a perfect square

    (a)

    4x2

    (b)

    16x2

    (c)

    8x2

    (d)

    -8x2

  9. The HCF of two polynomials p(x) and q(x) is 2x(x + 2) and LCM is 24x(x + 2)2 (x - 2) if p(x) = 8x+ 32x+ 32x, then q(x) ___________

    (a)

    4x3-16x

    (b)

    6x3-24x

    (c)

    12x3+24x

    (d)

    12x3-24x

  10. In a \(\triangle\)ABC, AD is the bisector \(\angle\)BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is

    (a)

    6 cm

    (b)

    4 cm

    (c)

    3 cm

    (d)

    8 cm

  11. In the adjacent figure \(\angle BAC\) = 90o and AD\(\bot \)BC then 

    (a)

    BD.CD = BC2

    (b)

    AB.AC = BC2

    (c)

    BD.CD = AD2

    (d)

    AB.AC = AD2

  12. In the given figure DE||BC:BD = x - 3, BA = 2x,CE = x- 2, and AC = 2x + 3, Find the value of x.

    (a)

    3

    (b)

    6

    (c)

    9

    (d)

    12

  13. The slope of the line which is perpendicular to a line joining the points (0, 0) and (– 8, 8) is

    (a)

    –1

    (b)

    1

    (c)

    \(\frac13\)

    (d)

    -8

  14. If slope of the line PQ is \(\frac { 1 }{ \sqrt { 3 } } \) then slope of the perpendicular bisector of PQ is

    (a)

    \(\sqrt { 3 } \)

    (b)

    \(-\sqrt { 3 } \)

    (c)

    \(\frac { 1 }{ \sqrt { 3 } } \)

    (d)

    0

  15. The area of triangle formed by the points (a, b+c), (b, c+a) and (c, a+b) is ____________

    (a)

    a+b+c

    (b)

    abc

    (c)

    (a+b+c)2

    (d)

    0

  16. (1 + tan \(\theta \) + sec\(\theta \)) (1 + cot\(\theta \) - cosec\(\theta \)) is equal to 

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    -1

  17. a cot \(\theta \) + b cosec\(\theta \) = p and b cot \(\theta \) + a cosec\(\theta \) = q then p2- qis equal to 

    (a)

    a- b2

    (b)

    b- a2

    (c)

    a+ b2

    (d)

    b - a

  18. Given that sinθ = \(\frac{a}{b}\), then cosθ is equal to ___________

    (a)

    \(\frac { b }{ \sqrt { { b }^{ 2 }-{ a }^{ 2 } } } \)

    (b)

    \(\frac { b }{ a } \)

    (c)

    \(\frac { \sqrt { { b }^{ 2 }-{ a }^{ 2 } } }{ b } \)

    (d)

    \(\frac { b }{ \sqrt { { b }^{ 2 }-{ a }^{ 2 } } } \)

  19. If the radius of the base of a cone is tripled and the height is doubled then the volume is

    (a)

    made 6 times

    (b)

    made 18 times

    (c)

    made 12 times

    (d)

    unchanged

  20. The total surface area of a hemi-sphere is how much times the square of its radius.

    (a)

    \(\pi\)

    (b)

    4\(\pi\)

    (c)

    3\(\pi\)

    (d)

    2\(\pi\)

  21. How many balls, each of radius 1 cm, can be made from a solid sphere of lead of radius cm?

    (a)

    64

    (b)

    216

    (c)

    512

    (d)

    16

  22. A spherical steel ball is melted to make 8 new identical balls. Then the radius each new ball is how much times the radius of the original ball?

    (a)

    \(\frac { 1 }{ 3 } \)

    (b)

    \(\frac { 1 }{ 4 } \)

    (c)

    \(\frac { 1 }{ 2 } \)

    (d)

    \(\frac { 1 }{ 8 } \)

  23. If the standard deviation of x, y, z is p then the standard deviation of 3x + 5, 3y + 5, 3z + 5 is

    (a)

    3p + 5

    (b)

    3p

    (c)

    p + 5

    (d)

    9p + 15

  24. If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is

    (a)

    3.5

    (b)

    3

    (c)

    4.5

    (d)

    2.5

  25. A number x is chosen at random from -4, -3, -2, -1, 0, 1, 2, 3, 4 find the probability that |x| ≤ 4

    (a)

    0

    (b)

    1

    (c)

    \(\frac{1}{2}\)

    (d)

    \(\frac{1}{9}\)

*****************************************

Reviews & Comments about 10th Standard Mathematics English Medium Free Online Test 1 Mark Questions 2020 - 2021 Part - Four

Write your Comment