Free Online Test 1 Mark Questions with Answer Key 2020 - 2021 Part - 10

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:25:00 Hrs
Total Marks : 25

    Part A

    25 x 1 = 25
  1. If {(a, 8 ),(6, b)}represents an identity function, then the value of a and b are respectively

    (a)

    (8,6)

    (b)

    (8,8)

    (c)

    (6,8)

    (d)

    (6,6)

  2. \((x-\frac { 1 }{ x } )={ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \) then f(x) =

    (a)

    x+ 2

    (b)

    \({ x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \)

    (c)

    x2- 2

    (d)

    \({ x }^{ 2 }-\frac { 1 }{ { x }^{ 2 } } \)

  3. If \(f(x)=\frac { x+1 }{ x-2 } ,g(x)=\frac { 1+2x }{ x-1 } \) then fog(x) is ___________

    (a)

    Constant function

    (b)

    Quadratic function

    (c)

    Cubic function

    (d)

    Identify function

  4. Given F1 = 1, F2 = 3 and Fn = Fn-1 + Fn-2 then F5 is

    (a)

    3

    (b)

    5

    (c)

    8

    (d)

    11

  5. Given a= -1, \(a=\frac { { a }_{ n } }{ n+2 } \), then a4 is ____________

    (a)

    \(-\frac { 1 }{ 20 } \)

    (b)

    \(-\frac { 1 }{ 4 } \)

    (c)

    \(-\frac { 1 }{ 840 } \)

    (d)

    \(-\frac { 1 }{ 120 } \)

  6. If p, q, r, x, y, z are in A.P, then 5p + 3, 5r + 3, 5x + 3, 5y + 3, 5z + 3 form ____________

    (a)

    a G.P

    (b)

    an A.P

    (c)

    a constant sequence

    (d)

    neither an A.P nor a G.P

  7. The solution of (2x - 1)2 = 9 is equal to

    (a)

    -1

    (b)

    2

    (c)

    -1, 2

    (d)

    None of these

  8. If A = \(\left( \begin{matrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{matrix} \right) \), B = \(\left( \begin{matrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{matrix} \right) \) and C = \(\left( \begin{matrix} 0 & 1 \\ -2 & 5 \end{matrix} \right) \), Which of the following statements are correct?
    (i) AB + C =  \(\left( \begin{matrix} 5 & 5 \\ 5 & 5 \end{matrix} \right) \)
    (ii) BC = \(\left( \begin{matrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{matrix} \right) \)
    (iii) BA + C = \(\left( \begin{matrix} 2 & 5 \\ 3 & 0 \end{matrix} \right) \)
    (iv) (AB)C = \(\left( \begin{matrix} -8 & 20 \\ -8 & 13 \end{matrix} \right) \) 

    (a)

    (i) and (ii) only

    (b)

    (ii) and (iii) only

    (c)

    (iii) and (iv) only

    (d)

    all of these

  9. The HCF of two polynomials p(x) and q(x) is 2x(x + 2) and LCM is 24x(x + 2)2 (x - 2) if p(x) = 8x+ 32x+ 32x, then q(x) ___________

    (a)

    4x3-16x

    (b)

    6x3-24x

    (c)

    12x3+24x

    (d)

    12x3-24x

  10. The parabola y = -3x2 is ___________

    (a)

    Open upward

    (b)

    Open downward

    (c)

    Open rightward

    (d)

    Open leftward

  11. In figure if PR is tangent to the circle at P and O is the centre of the circle, then \(\angle PQR\) is

    (a)

    120o

    (b)

    100°

    (c)

    110°

    (d)

    90°

  12. The ratio of the areas of two similar triangles is equal to ____________

    (a)

    The ratio of their corresponding sides

    (b)

    The cube of the ratio of their corresponding sides

    (c)

    The ratio of their corresponding attitudes

    (d)

    The square of the ratio of their corresponding sides

  13. If slope of the line PQ is \(\frac { 1 }{ \sqrt { 3 } } \) then slope of the perpendicular bisector of PQ is

    (a)

    \(\sqrt { 3 } \)

    (b)

    \(-\sqrt { 3 } \)

    (c)

    \(\frac { 1 }{ \sqrt { 3 } } \)

    (d)

    0

  14. When proving that a quadrilateral is a parallelogram by using slopes you must find

    (a)

    The slopes of two sides

    (b)

    The slopes of two pair of opposite sides

    (c)

    The lengths of all sides

    (d)

    Both the lengths and slopes of two sides

  15. Find the slope of the line 2y = x + 8 ____________

    (a)

    \(\frac { 1 }{ 2 } \)

    (b)

    1

    (c)

    8

    (d)

    2

  16. If sin \(\theta \) = cos \(\theta \), then 2 tan\(\theta \) + sin\(\theta \) -1 is equal to 

    (a)

    \(\frac { -3 }{ 2 } \)

    (b)

    \(\frac { 3 }{ 2 } \)

    (c)

    \(\frac { 2 }{ 3 } \)

    (d)

    \(\frac { -2 }{ 3 } \)

  17. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is

    (a)

    20, 10\(\sqrt { 3 } \)

    (b)

    30, 5\(\sqrt { 3 } \)

    (c)

    20, 10

    (d)

    30, 10\(\sqrt { 3 } \)

  18. The value of (tan1o tan2o tan3o..... tan89o) is ___________

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    \(\frac{1}{2}\)

  19. 9 sec2A  - 9tan2A = ___________

    (a)

    1

    (b)

    9

    (c)

    8

    (d)

    0

  20. The total surface area of a cylinder whose radius is \(\frac{1}{3}\)of its height is

    (a)

    \(\frac { 9\pi { h }^{ 2 } }{ 8 } \) sq.units

    (b)

    24\(\pi\)h2 sq.units

    (c)

    \(\frac { 8\pi { h }^{ 2 } }{ 9 } \) sq.units

    (d)

    \(\frac { 56\pi { h }^{ 2 } }{ 9 } \) sq.units

  21. A spherical ball of radius r1 units is melted to make 8 new identical balls each of radius r2 units. Then r1:r2 is

    (a)

    2:1

    (b)

    1:2

    (c)

    4:1

    (d)

    1:4

  22. The height of a cone is 60 cm. A small cone is cut off at the top by plane parallel to the base and its volume is \(\left[ \frac { 1 }{ 64 } \right] ^{ th }\) the volume of the original cone. Then the height of the smaller cone is ___________

    (a)

    45 cm

    (b)

    30 cm

    (c)

    15 cm

    (d)

    20 cm

  23. If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is

    (a)

    3.5

    (b)

    3

    (c)

    4.5

    (d)

    2.5

  24. The mean of a observation x1, x2, x3, ......... xn is \(\bar { x } \). If each observation is multiplied by p, there the mean of the new observations is ___________

    (a)

    \(\frac { \bar { x } }{ p } \)

    (b)

    p\(\bar { x } \)

    (c)

    \(\bar { x } \)

    (d)

    P+\(\bar { x } \)

  25. In a competition containing two events A and B, the probability of winning the events A and B are \(\frac { 1 }{ 3 } \) and \(\frac { 1 }{ 4 } \) respectively and the probability if winning both events is ___________

    (a)

    \(\frac { 1 }{ 12 } \)

    (b)

    \(\frac { 5 }{ 12 } \)

    (c)

    \(\frac { 1 }{ 12 } \)

    (d)

    \(\frac { 7 }{ 12 } \)

*****************************************

Reviews & Comments about 10th Standard Mathematics English Medium Free Online Test 1 Mark Questions with Answer Key 2020 - 2021 Part - 10

Write your Comment