Free Online Test Book Back 1 Mark Questions Part - One

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:20:00 Hrs
Total Marks : 20

    Part A

    20 x 1 = 20
  1. A = {a, b, p}, B = {2, 3}, C = {p, q, r, s} then n[(A U C) x B] is

    (a)

    8

    (b)

    20

    (c)

    12

    (d)

    16

  2. If f(x) = 2x2 and g(x) = \(\frac{1}{3x}\), then f o g is

    (a)

    \(\\ \frac { 3 }{ 2x^{ 2 } } \)

    (b)

    \(\\ \frac { 2 }{ 3x^{ 2 } } \)

    (c)

    \(\\ \frac { 2 }{ 9x^{ 2 } } \)

    (d)

    \(\\ \frac { 1 }{ 6x^{ 2 } } \)

  3. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is

    (a)

    2025

    (b)

    5220

    (c)

    5025

    (d)

    2520

  4. In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120?

    (a)

    6

    (b)

    7

    (c)

    8

    (d)

    9

  5. \(\frac { x }{ { x }^{ 2 }-25 } -\frac { 8 }{ { x }^{ 2 }+6x+5 } \) gives

    (a)

    \(\frac { { x }^{ 2 }-7x+40 }{ \left( x-5 \right) \left( x+5 \right) } \)

    (b)

    \(\frac { { x }^{ 2 }+7x+40 }{ \left( x-5 \right) \left( x+5 \right) \left( x+1 \right) } \)

    (c)

    \(\frac { { x }^{ 2 }-7x+40 }{ \left( { x }^{ 2 }-25 \right) \left( x+1 \right) } \)

    (d)

    \(\frac { { x }^{ 2 }+10 }{ \left( { x }^{ 2 }-25 \right) \left( x+1 \right) } \)

  6. The values of a and b if 4x4 - 24x3 + 76x2 + ax + b is a perfect square are

    (a)

    100, 120

    (b)

    10, 12

    (c)

    -120, 100

    (d)

    12, 10

  7. Find the matrix X if 2X + \(\left( \begin{matrix} 1 & 3 \\ 5 & 7 \end{matrix} \right) =\left( \begin{matrix} 5 & 7 \\ 9 & 5 \end{matrix} \right) \)

    (a)

    \(\left(\begin{array}{cc} -2 & -2 \\ 2 & -1 \end{array}\right)\)

    (b)

    \(\left(\begin{array}{cc} 2 & 2 \\ 2 & -1 \end{array}\right)\)

    (c)

    \(\left(\begin{array}{ll} 1 & 2 \\ 2 & 2 \end{array}\right)\)

    (d)

    \(\left(\begin{array}{ll} 2 & 1 \\ 2 & 2 \end{array}\right)\)

  8. If A = \(\left( \begin{matrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{matrix} \right) \), B = \(\left( \begin{matrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{matrix} \right) \) and C = \(\left( \begin{matrix} 0 & 1 \\ -2 & 5 \end{matrix} \right) \), Which of the following statements are correct?
    (i) AB + C =  \(\left( \begin{matrix} 5 & 5 \\ 5 & 5 \end{matrix} \right) \)
    (ii) BC = \(\left( \begin{matrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{matrix} \right) \)
    (iii) BA + C = \(\left( \begin{matrix} 2 & 5 \\ 3 & 0 \end{matrix} \right) \)
    (iv) (AB)C = \(\left( \begin{matrix} -8 & 20 \\ -8 & 13 \end{matrix} \right) \) 

    (a)

    (i) and (ii) only

    (b)

    (ii) and (iii) only

    (c)

    (iii) and (iv) only

    (d)

    all of these

  9. If in triangles ABC and EDF,\(\cfrac { AB }{ DE } =\cfrac { BC }{ FD } \) then they will be similar, when

    (a)

    \(\angle B=\angle E\)

    (b)

    \(\angle A=\angle D\)

    (c)

    \(\angle B=\angle D\)

    (d)

    \(\angle A=\angle F\)

  10. In a \(\triangle\)ABC, AD is the bisector \(\angle\)BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is

    (a)

    6 cm

    (b)

    4 cm

    (c)

    3 cm

    (d)

    8 cm

  11. How many tangents can be drawn to the circle from an exterior point?

    (a)

    one

    (b)

    two

    (c)

    infinite

    (d)

    zero

  12. The point of intersection of 3x − y = 4 and x + y = 8 is

    (a)

    (5, 3)

    (b)

    (2, 4)

    (c)

    (3, 5)

    (d)

    (4, 4)

  13. The equation of a line passing through the origin and perpendicular to the line 7x - 3y + 4 = 0 is

    (a)

    7x - 3y + 4 = 0

    (b)

    3x - 7y + 4 = 0

    (c)

    3x + 7y = 0

    (d)

    7x - 3y = 0

  14. A straight line has equation 8y = 4x + 21. Which of the following is true

    (a)

    The slope is 0.5 and the y intercept is 2.6

    (b)

    The slope is 5 and the y intercept is 1.6

    (c)

    The slope is 0.5 and the y intercept is 1.6

    (d)

    The slope is 5 and the y intercept is 2.6

  15. If sin \(\theta \) = cos \(\theta \), then 2 tan\(\theta \) + sin\(\theta \) -1 is equal to 

    (a)

    \(\frac { -3 }{ 2 } \)

    (b)

    \(\frac { 3 }{ 2 } \)

    (c)

    \(\frac { 2 }{ 3 } \)

    (d)

    \(\frac { -2 }{ 3 } \)

  16. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ‘b’ metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to

    (a)

    \(\sqrt { 3 } \) b

    (b)

    \(\frac { b }{ 3 } \)

    (c)

    \(\frac { b }{ 2 } \)

    (d)

    \(\frac { b }{ \sqrt { 3 } } \)

  17. The total surface area of a hemi-sphere is how much times the square of its radius.

    (a)

    \(\pi\)

    (b)

    4\(\pi\)

    (c)

    3\(\pi\)

    (d)

    2\(\pi\)

  18. The height and radius of the cone of which the frustum is a part are h1 units and r1 units respectively. Height of the frustum is h2 units and radius of the smaller base is r2 units. If h2 : h1 = 1:2 then r: r1 is

    (a)

    1:3

    (b)

    1:2

    (c)

    2:1

    (d)

    3:1

  19. A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is

    (a)

    \(\frac{3}{10}\)

    (b)

    \(\frac{7}{10}\)

    (c)

    \(\frac{3}{9}\)

    (d)

    \(\frac{7}{9}\)

  20. The probability of getting a job for a person is \(\frac{x}{3}\). If the probability of not getting the job is \(\frac{2}{3}\)  then the value of x is

    (a)

    2

    (b)

    1

    (c)

    3

    (d)

    1.5

*****************************************

Reviews & Comments about 10th Standard Mathematics English Medium Free Online Test Book Back 1 Mark Questions Part - One

Write your Comment