Important 1 Marks Questions Creative

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 60

    Part A

    60 x 1 = 60
  1. Let f(x) = x- x, then f(x- 1) - (x + 1) is ___________

    (a)

    4x

    (b)

    2-2x

    (c)

    2-4x

    (d)

    4x-2

  2. If the order pairs (a, -1) and (5, b) belongs to {(x, y) | y = 2x + 3}, then a and b are __________

    (a)

    -13, 2

    (b)

    2, 13

    (c)

    2, -13

    (d)

    -2,13

  3. The function t which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined Fahrenheit degree is 95, then the value of  C \(t(C)=\frac { 9c }{ 5 } +32\) is ___________

    (a)

    37

    (b)

    39

    (c)

    35

    (d)

    36

  4. If f(x) = ax - 2, g(x) = 2x - 1 and fog = gof, the value of a is ___________

    (a)

    3

    (b)

    -3

    (c)

    \(\frac { 1 }{ 3 } \)

    (d)

    13

  5. If f(x) = 2 - 3x, then f o f(1 - x) = ?

    (a)

    5x+9

    (b)

    9x-5

    (c)

    5-9x

    (d)

    5x-9

  6. If f(x) + f(1 - x) = 2 then \(f\left( \frac { 1 }{ 2 } \right) \) is ___________

    (a)

    5

    (b)

    -1

    (c)

    -9

    (d)

    1

  7. If \(f(x)=\frac { x+1 }{ x-2 } ,g(x)=\frac { 1+2x }{ x-1 } \) then fog(x) is ___________

    (a)

    Constant function

    (b)

    Quadratic function

    (c)

    Cubic function

    (d)

    Identify function

  8. If a and b are the two positive integers when a > b and b is a factor of a then HCF (a, b) is ____________

    (a)

    b

    (b)

    a

    (c)

    ab

    (d)

    \(\frac { a }{ b } \)

  9. If 3 is the least prime factor of number 'a' and 7 is least prime factor of number 'b', then the least prime factor of a + b is ____________

    (a)

    a + b

    (b)

    2

    (c)

    5

    (d)

    10

  10. The difference between the remainders when 6002 and 601 are divided by 6 is ____________

    (a)

    2

    (b)

    1

    (c)

    0

    (d)

    3

  11. 44 ≡ 8 (mod12), 113 ≡ 85 (mod 12), thus 44 x 113 ≡______(mod 12):

    (a)

    4

    (b)

    3

    (c)

    2

    (d)

    1

  12. The first term of an A.P. whose 8th and 12th terms are 39 and 59 respectively is ____________

    (a)

    5

    (b)

    6

    (c)

    4

    (d)

    3

  13. How many terms are there in the G.P : 5, 20, 80, 320,..., 20480

    (a)

    5

    (b)

    6

    (c)

    7

    (d)

    9

  14. If pth, qth and rth terms of an A.P. are a, b, c respectively, then (a(q - r) + b(r - p) + c(p - q) is____________

    (a)

    0

    (b)

    a + b + c

    (c)

    p + q + r

    (d)

    pqr

  15. In an A.P if the pth term is q and the qth term is p, then its nth term is ____________

    (a)

    p+q-n

    (b)

    p+q+n

    (c)

    p-q+n

    (d)

    p-q-n

  16. Which of the following are linear equation in three variables ___________

    (a)

    2x = z

    (b)

    2sin x + y cos y + z tan z = 2

    (c)

    x + 2y+ z = 3

    (d)

    x - y - z = 7

  17. Consider the following statements:
    (i) The HCF of x+y and x8-y8 is x+y
    (ii) The HCF of x+y and x8+y8 is x+y
    (iii) The HCF of x-y nd x8+y8 is x-y
    (iv) The HCF of x-y and x8-y8 is x-y

    (a)

    (i) and (ii)

    (b)

    (ii) and (iii)

    (c)

    (i) and (iv)

    (d)

    (ii) and (iv)

  18. The square root of 4m- 24m + 36 is ___________

    (a)

    4(m-3)

    (b)

    2(m-3)

    (c)

    (2m-3)2

    (d)

    (m-3)

  19. Axis of symmetry in the term of vertical line separates parabola into ___________

    (a)

    3 equal halves

    (b)

    5 equal halves

    (c)

    2 equal halves

    (d)

    4 equal halves

  20. Choose the correct answer
    (i) Every scalar matrix is an identity matrix
    (ii) Every identity matrix is a scalar matrix
    (iii) Every diagonal matrix is an identity matrix
    (iv) Every null matrix is a scalar matrix

    (a)

    (i) and (iii) only

    (b)

    (iii) only

    (c)

    (iv) only

    (d)

    (ii) and (iv) only

  21. If \(A=\left[ \begin{matrix} y & 0 \\ 3 & 4 \end{matrix} \right] \) and \(I=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \) then A= 16 for ___________

    (a)

    y = 4

    (b)

    y = 5

    (c)

    y = -4

    (d)

    y = 16

  22. If \(A=\left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] _{ 3\times 2 }\) \(B=\left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{matrix} \right] _{ 2\times 3 }\) then which of the following products can be made from these matrices 
    (i) A2
    (ii) B2
    (iii) AB
    (iv) BA

    (a)

    (i) only

    (b)

    (ii) and (iii) only

    (c)

    (iii) and (iv) only

    (d)

    all the above

  23. If triangle PQR is similar to triangle LMN such that 4PQ = LM and QR = 6 cm then MN is equal to ____________

    (a)

    12 cm

    (b)

    24 cm

    (c)

    10 cm

    (d)

    36 cm

  24. I the given figure DE||AC which of the following is true.

    (a)

    \(x=\frac { ay }{ b+a } \)

    (b)

    \(x=\frac { a+b }{ ay } \)

    (c)

    \(x=\frac { ay }{ b-a } \)

    (d)

    \(\frac { x }{ y } =\frac { a }{ b } \)

  25. S and T are points on sides PQ and PR respectively of \(\Delta PQR\) If PS = 3cm, AQ = 6 cm, PT = 5 cm, and TR = 10 cm and then QR

    (a)

    4 ST

    (b)

    5 ST

    (c)

    3 ST

    (d)

    3 QR

  26. The perimeter of a right triangle is 36 cm. Its hypotenuse is 15 cm, then the area of the triangle is ____________

    (a)

    108 cm2

    (b)

    54 cm2

    (c)

    27 cm2

    (d)

    216 cm2

  27. A line which intersects a circle at two distinct points is called ____________

    (a)

    Point of contact

    (b)

    secant

    (c)

    diameter

    (d)

    tangent

  28. In the given figure if OC = 9 cm and OB = 15 cm then OB + BD is equal to ____________

    (a)

    23 cm

    (b)

    24 cm

    (c)

    27 cm

    (d)

    30 cm

  29. Two concentric circles if radii a and b where a>b are given. The length of the chord of the circle which touches the smaller circle is ____________

    (a)

    \(\sqrt { { a }^{ 2 }-{ b }^{ 2 } } \)

    (b)

    \(\sqrt { { a }^{ 2 }-{ b }^{ 2 } } \)

    (c)

    \(\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \)

    (d)

    \(2\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \)

  30. Find the ratio in which the line segment joining the points (-3, 10) and (6,-8) is internally divided by (-1, 6) ____________

    (a)

    7:2

    (b)

    3:4

    (c)

    2:7

    (d)

    5:3

  31. The area of triangle formed by the points (a, b+c), (b, c+a) and (c, a+b) is ____________

    (a)

    a+b+c

    (b)

    abc

    (c)

    (a+b+c)2

    (d)

    0

  32. Find the slope of the line 2y = x + 8 ____________

    (a)

    \(\frac { 1 }{ 2 } \)

    (b)

    1

    (c)

    8

    (d)

    2

  33. Find the value of P, given that the line  \(\frac { y }{ 2 } =x-p\) passes through the point (-4, 4) is ____________

    (a)

    -4

    (b)

    -6

    (c)

    0

    (d)

    8

  34. Find the slope and the y-intercept of the line \(3y-\sqrt { 3x } +1=0\) is ____________

    (a)

    \(\frac { 1 }{ \sqrt { 3 } } ,\frac { -1 }{ 3 } \)

    (b)

    \(-\frac { 1 }{ \sqrt { 3 } } ,\frac { -1 }{ 3 } \)

    (c)

    \(\sqrt { 3 } ,1\)

    (d)

    \(-\sqrt { 3 } ,3\)

  35. A line passing through the point (2, 2) and the axes enclose an area ∝. The intercept on the axes made by the line are given by the roots of ____________

    (a)

    x2-2-∝x+∝ = 0

    (b)

    x2+2∝x+∝ = 0

    (c)

    x2-∝x+2∝ = 0

    (d)

    none of these

  36. Find the equation of the line passing through the point (0, 4) and is parallel to 3x+5y+15 = 0 the line is ___________

    (a)

    3x+5y+15 = 0

    (b)

    3x+5y-20 = 0

    (c)

    2x+7y-20 = 0

    (d)

    4x+3y-15 = 0

  37. The value of the expression [cosec (75+ θ) - sec (15- θ) - tan (55+ θ) + cot(35- θ] is ___________

    (a)

    -1

    (b)

    0

    (c)

    1

    (d)

    \(\frac{3}{2}\)

  38. Given that sinθ = \(\frac{a}{b}\), then cosθ is equal to ___________

    (a)

    \(\frac { b }{ \sqrt { { b }^{ 2 }-{ a }^{ 2 } } } \)

    (b)

    \(\frac { b }{ a } \)

    (c)

    \(\frac { \sqrt { { b }^{ 2 }-{ a }^{ 2 } } }{ b } \)

    (d)

    \(\frac { b }{ \sqrt { { b }^{ 2 }-{ a }^{ 2 } } } \)

  39. If cos9∝ = sin∝ and 9∝ < 90o, then the value of tan t∝ is

    (a)

    \(\frac{1}{\sqrt{3}}\)

    (b)

    \({\sqrt{3}}\)

    (c)

    1

    (d)

    0

  40. Given that sin ∝ = \(\frac{1}{2}\) and cos β = \(\frac{1}{2}\), then the value of (∝ + β) is ___________

    (a)

    0o

    (b)

    30o

    (c)

    60o

    (d)

    90o

  41. A pole 6 m high a shadow 2\(\sqrt{3}\) m long on the ground, then the sun's elevation is ___________

    (a)

    60o

    (b)

    45o

    (c)

    30o

    (d)

    90o

  42. If A is an assets angle of Δ ABC, right angle at 3, then the value of sin A T cos A is ___________

    (a)

    =1

    (b)

    >1

    (c)

    <1

    (d)

    =2

  43. From the figure, the value of cosec θ + cot θ is ___________

    (a)

    \(\frac { a+b }{ c } \)

    (b)

    \(\frac { c }{ a+b } \)

    (c)

    \(\frac { b+c }{ a } \)

    (d)

    \(\frac { b }{ a+c } \)

  44. The value of \(\cfrac { 3 }{ cot^{ 2 }\theta } -\cfrac { 3 }{ { cos }^{ 2 }\theta } \) is equal to ___________

    (a)

    \(\frac { 1 }{ 3 } \)

    (b)

    3

    (c)

    0

    (d)

    -3

  45. If sin(α + β) = 1 then cos(α - β) can be reduced to ___________

    (a)

    sin α

    (b)

    cos β

    (c)

    sin 2β

    (d)

    cos 2β

  46. The top of two poles of height 18.5m and 7m are connected by a wire. If the wire makes an angle of measures 360o with horizontal, then the length of the wire is ____________

    (a)

    23m

    (b)

    18m

    (c)

    28m

    (d)

    25.5m

  47. If S1 denotes the total surface area at a sphere of radius ૪ and S2 denotes the total surface area of a cylinder of base radius ૪ and height 2r, then ___________

    (a)

    S= S2

    (b)

    S> S2

    (c)

    S< S2

    (d)

    S= 2S2

  48. How many balls, each of radius 1 cm, can be made from a solid sphere of lead of radius cm?

    (a)

    64

    (b)

    216

    (c)

    512

    (d)

    16

  49. A solid frustum is of height 8 cm. If the radii of its lower and upper ends are 3 cm and 9 cm respectively, then its slant height is ___________

    (a)

    15 cm

    (b)

    12 cm

    (c)

    10 cm

    (d)

    17 cm

  50. The material of a cone is converted into the shape of a cylinder of equal radius. If the height of the cylinder is 5 cm, then height of the cone is ___________

    (a)

    10 cm

    (b)

    15 cm

    (c)

    18 cm

    (d)

    24 cm

  51. When Karuna divided surface area of a sphere by the sphere's volume, he got the answer as \(\frac { 1 }{ 3 } \). What is the radius of the sphere?

    (a)

    24 cm

    (b)

    9cm

    (c)

    54cm

    (d)

    4.5cm

  52. A semicircular thin sheet of a metal of diameter 28 cm is bent and an open conical cup. What is the capacity of the cup?

    (a)

    \(\left[ \frac { 1000 }{ 3 } \right] \sqrt { 3 } { cm }^{ 3 }\)

    (b)

    \(300\sqrt { 3 } { cm }^{ 3 }\)

    (c)

    \(\left[ \frac { 700 }{ 3 } \right] \sqrt { 3 } { cm }^{ 2 }\)

    (d)

    \(\left[ \frac { 1078 }{ 3 } \right] \sqrt { 3 } { cm }^{ 3 }\)

  53. If a letter is chosen at random from the English alphabets {a, b....,z}, then the probability that the letter chosen precedes x ____________

    (a)

    \(\frac { 12 }{ 13 } \)

    (b)

    \(\frac { 1 }{ 13 } \)

    (c)

    \(\frac { 23 }{ 26 } \)

    (d)

    \(\frac { 3 }{ 26 } \)

  54. IF the probability of the non-happening of a event is q, then the probability of happening of that event is 

    (a)

    1-q

    (b)

    q

    (c)

    q/2

    (d)

    ∝q

  55. The mean of a observation x1, x2, x3, ......... xn is \(\bar { x } \). If each observation is multiplied by p, there the mean of the new observations is ___________

    (a)

    \(\frac { \bar { x } }{ p } \)

    (b)

    p\(\bar { x } \)

    (c)

    \(\bar { x } \)

    (d)

    P+\(\bar { x } \)

  56. A letter is selected at random from the the word 'PROBABILITY'. The probability that its is nota vowel is _______.

    (a)

    \( \frac { 4 }{ 11 } \)

    (b)

    \(\frac { 7 }{ 11 } \)

    (c)

    \(\frac { 3 }{ 11 } \)

    (d)

    \(\frac { 6 }{ 11 } \)

  57. A number x is chosen at random from -4, -3, -2, -1, 0, 1, 2, 3, 4. The probability that \(\left| x \right| \le 3\) is ___________

    (a)

    \(\frac { 3 }{ 9 } \)

    (b)

    \(\frac { 4 }{ 9 } \)

    (c)

    \(\frac { 1 }{ 9 } \)

    (d)

    \(\frac { 7 }{ 9 } \)

  58. If the probability of non-happening of an event is, then probability of happening of the event is ___________

    (a)

    1-q

    (b)

    q

    (c)

    \(\frac { q }{ 2 } \)

    (d)

    2q

  59. In one thousand lottery tickets, there are 50 prizes to be given. The probability of happenning of the event is ___________

    (a)

    1-q

    (b)

    q

    (c)

    \(\frac { q }{ 2 } \)

    (d)

    2q

  60. When three coins are tossed, the probability of getting the same face on all the three coins is ___________

    (a)

    \(\frac { 1 }{ 8 } \)

    (b)

    \(\frac { 1 }{ 4 } \)

    (c)

    \(\frac { 3 }{ 8 } \)

    (d)

    \(\frac { 1 }{ 3 } \)

*****************************************

Reviews & Comments about 10th Standard Maths English Medium Creative Important 1 Marks Questions

Write your Comment