New ! Maths MCQ Practise Tests



Important 1mark -2

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Use blue pen Only

Time : 00:15:00 Hrs
Total Marks : 25

    Part A

    Answer all the questions

    25 x 1 = 25
  1. The sum of the digits at the 10th place of all numbers formed with the help of 2, 4, 5, 7 taken all at a time is

    (a)

    432

    (b)

    108

    (c)

    36

    (d)

    18

  2. In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is

    (a)

    110

    (b)

    10C3

    (c)

    120

    (d)

    116

  3. In 2nC3 : nC3 = 11 : 1 then n is

    (a)

    5

    (b)

    6

    (c)

    11

    (d)

    7

  4. The product of r consecutive positive integers is divisible by _________

    (a)

    r!

    (b)

    r!+1

    (c)

    (r+1)

    (d)

    none of these

  5. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is _________

    (a)

    45

    (b)

    40

    (c)

    39

    (d)

    38

  6. is _________

    (a)

    \(\lfloor{n}(n+2)\)

    (b)

    (c)

    (d)

    none of these

  7. If 100Cr = 100C3r then r is _________

    (a)

    24

    (b)

    25

    (c)

    20

    (d)

    50

  8. How many words can be formed using all the letters of the word ANAND _________

    (a)

    30

    (b)

    35

    (c)

    40

    (d)

    45

  9. There are 10 lamps in a hall. Each one of them can be switched on independently. The number of ways in which the hall can be illuminated is  _________

    (a)

    102

    (b)

    1023

    (c)

    210

    (d)

    10!

  10. The number of positive integral solution of \(x\times y\times z=30\) is  _________

    (a)

    3

    (b)

    1

    (c)

    9

    (d)

    27

  11. There are 15 points in a plane of which exactly 8 are collinear. The number of straight lines obtained by joining these points is  _________

    (a)

    105

    (b)

    28

    (c)

    77

    (d)

    78

  12. If nC10 = nC6, then nC2 =  _________

    (a)

    16

    (b)

    4

    (c)

    120

    (d)

    240

  13. The unit vector parallel to the resultant of the vectors \(\hat{i}+\hat{j}-\hat{k}\) and \(\hat{i}-2\hat{j}+\hat{k}\) is

    (a)

    \({\hat{i}-\hat{j}+\hat{k}\over\sqrt{5}}\)

    (b)

    \({2\hat{i}+\hat{j}\over\sqrt{5}}\)

    (c)

    \({2\hat{i}-\hat{j}+\hat{k}\over\sqrt{5}}\)

    (d)

    \({2\hat{i}-\hat{j}\over\sqrt{5}}\)

  14. If ABCD is a parallelogram, then \(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{CD}\) is equal to

    (a)

    \(2(\overrightarrow{AB}+\overrightarrow{AD})\)

    (b)

    \(4\overrightarrow{AC}\)

    (c)

    \(4\overrightarrow{BD}\)

    (d)

    \(\overrightarrow{0}\)

  15. Two vertices of a triangle have position vectors \(3\hat{i}+4\hat{j}-4\hat{k}\) and \(2\hat{i}+3\hat{j}+4\hat{k}\)If the position vector of the centroid is \(\hat{i}+2\hat{j}+3\hat{k}\)then the position vector of the third vertex is

    (a)

    \(-2\hat{i}-\hat{j}+9\hat{k}\)

    (b)

    \(-2\hat{i}-\hat{j}-6\hat{k}\)

    (c)

    \(2\hat{i}-\hat{j}+6\hat{k}\)

    (d)

    \(-2\hat{i}+\hat{j}+6\hat{k}\)

  16. If \(\overrightarrow{a}\)  and \(\overrightarrow{b}\) having same magnitude and angle between them is 60° and their scalar product is \({1\over2}\) then \(|\overrightarrow{a}|\) is 

    (a)

    2

    (b)

    3

    (c)

    7

    (d)

    1

  17. Vectors \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are inclined at an angle \(\theta =120^o\)If \(|\overrightarrow{a}|=1,|\overrightarrow{b}|=2,\) then \([(\overrightarrow{a}+3\overrightarrow{b})\times (3\overrightarrow{a}-\overrightarrow{b})]^2\) is equal to

    (a)

    225

    (b)

    275

    (c)

    325

    (d)

    300

  18. If   \(\overrightarrow{a}\)  and   \(\overrightarrow{b}\) are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between   \(\overrightarrow{a}\)  and \(\overrightarrow{a}+\overrightarrow{b}\) is

    (a)

    30°

    (b)

    60°

    (c)

    45°

    (d)

    90°

  19. If the points whose position vectors \(10\hat{i}+3\hat{j},12\hat{i}-5\hat{j}\) and \(a\hat{i}+11\hat{j}\) are collinear then a is equal to

    (a)

    6

    (b)

    3

    (c)

    5

    (d)

    8

  20. If \(y={1\over a-z}\)then \({dz\over dy}\) is

    (a)

    \((a-z)^2\)

    (b)

    -(z - a)2

    (c)

    (z + a)2

    (d)

    -(z + a)2

  21. If y = mx + c and f(0) =\(f '(0)=1\)then f(2) is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    -3

  22. If x = a sin \(\theta\) and y = b cos \(\theta\), then \({d^2y\over dx^2}\)is

    (a)

    \({a \over b^2}sec^2 \theta\)

    (b)

    \(-{b \over a}sec^2 \theta\)

    (c)

    \(-{b \over a^2}sec^3 \theta\)

    (d)

    \(-{b^2\over a^2}sec^3 \theta\)

  23. If f(x) = x + 2, then f '(f(x)) at x = 4 is

    (a)

    8

    (b)

    1

    (c)

    4

    (d)

    5

  24. If g(x) = (x2 + 2x + 3) f(x) and f(0) = 5 and \(lim_{x \rightarrow 0}{f(x)-5\over x}=4\)then g'(0) is

    (a)

    20

    (b)

    14

    (c)

    18

    (d)

    12

  25. The number of points in R in which the function \(f(x)=|x-1|+|x-3|+sin \ x\) is not differentiable, is

    (a)

    3

    (b)

    2

    (c)

    1

    (d)

    4

*****************************************

Reviews & Comments about 11th Maths Important One Mark Question Paper - 2

Write your Comment