New ! Maths MCQ Practise Tests



Matrices and Determinants Three Marks Questions

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 30
    10 x 3 = 30
  1. Prove that \(\begin{vmatrix} 1& a & a^2-bc \\1 &b &b^2-ca \\ 1 & c & c^2-ab \end{vmatrix}=0.\)

  2. If a, b, c are pth, qth and rth terms of an A.P, find the value of \(\begin{vmatrix} a & b & c \\ p & q & r \\ 1& 1 &1 \end{vmatrix}\)

  3. Solve the following problems by using Factor Theorem :
    Solve \(\begin{vmatrix} x+a &b &c \\ a & x+b & c \\ a & b &x+c \end{vmatrix}=0\)

  4. Identify the singular and non-singular matrices:\(\begin{bmatrix} 1&2 &3 \\ 4 & 5 &6 \\ 7 & 8 & 9 \end{bmatrix}\)

  5. Identify the singular and non-singular matrices:\(\begin{bmatrix} 2&-3 &5 \\ 6 & 0 &4 \\ 1 & 5 & -7 \end{bmatrix}\)

  6. Find non-Zero values of x satisfying the matrix equation, \(x\left[ \begin{matrix} 2x & 2 \\ 3 & x \end{matrix} \right] +2\left[ \begin{matrix} 8 & 5x \\ 4 & 4x \end{matrix} \right] =\left[ \begin{matrix} { x }^{ 2 }+8 & 24 \\ 10 & 6x \end{matrix} \right] \)

  7. If A = \(\left[ \begin{matrix} \alpha & 0 \\ 1 & 1 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} 1 & 0 \\ 5 & 1 \end{matrix} \right] \) find the values of \(\alpha\) for which A= B.

  8. Under what condition is the matrix equation A- B2 = (A - B)(A + B) is true?

  9. Prove that \(\left| \begin{matrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{matrix} \right| \) = 4(a + b)(b + c)(c + a). Using factor theorem.

  10. Show that the points (a, b + c)(b, c + a) and (c, a + b) and C(c, a + b) are collinear.

*****************************************

Reviews & Comments about 11th Maths - Matrices and Determinants Three Marks Questions

Write your Comment