New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    25 x 1 = 25
  1. The function f:[0,2π]➝[-1,1] defined by f(x) = sin x is

    (a)

    one-to-one

    (b)

    on to

    (c)

    bijection

    (d)

    cannot be defined

  2. If the function f:[-3,3]➝S defined by f(x) = x2 is onto, then S is

    (a)

    [-9,9]

    (b)

    R

    (c)

    [-3,3]

    (d)

    [0,9]

  3. The inverse of f(x) = \(\begin{cases} x\quad if\quad x<1 \\ { x }^{ 2 }\quad if\quad 1\le x\le 4 \\ 8\sqrt { x } \quad if\quad x>4 \end{cases}\) is

    (a)

    \({ f }^{ -1 }(x)=\begin{cases} x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (b)

    \({ f }^{ -1 }(x)=\begin{cases} -x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (c)

    \({ f }^{ -1 }(x)=\begin{cases} { x }^{ 2 }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (d)

    \({ f }^{ -1 }(x)=\begin{cases} { 2x }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 8 } \quad if\quad x>16 \end{cases}\)

  4. Let f:R➝R be defined by f(x) = 1 - |x|. Then the range of f is

    (a)

    R

    (b)

    (1,∞)

    (c)

    (-1,∞)

    (d)

    (-∞,1]

  5. If |x+2| \(\le\) 9, then x belongs to

    (a)

    \((-\infty ,-7)\)

    (b)

    [-11, 7]

    (c)

    \((-\infty ,-7)\cup (11,\infty)\)

    (d)

    (-11, 7)

  6. Given that x, y and b are real numbers x < y, b > 0, then

    (a)

    xb < yb

    (b)

    xb > yb

    (c)

    xb ≤ yb

    (d)

    \(\frac { x }{ b } \ge \frac { y }{ b } \)

  7. If  \(\frac { kx }{ (x+2)(x-1) } =\frac { 2 }{ x+2 } +\frac { 1 }{ x-1 } \), then the value of k is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  8. If tan α and tan β are the roots of x2 + ax + b = 0; then \(\frac { sin(\alpha +\beta ) }{ sin\alpha sin\beta } \) is equal to

    (a)

    \(\frac { b }{ a } \)

    (b)

    \(\frac { a }{ b } \)

    (c)

    \(-\frac { a }{ b } \)

    (d)

    \(-\frac { b}{ a } \)

  9. The sum up to n terms of the series \(\frac { 1 }{ \sqrt { 1 } +\sqrt { 3 } } +\frac { 1 }{ \sqrt { 3 } +\sqrt { 5 } } +\frac { 1 }{ \sqrt { 5 } +\sqrt { 7 } } +\)....is 

    (a)

    \(\sqrt { 2n+1 } \)

    (b)

    \(\frac { \sqrt { 2n+1 } }{ 2 } \)

    (c)

    \(\sqrt { 2n+1 } -1\)

    (d)

    \(\frac { \sqrt { 2n+1 } -1 }{ 2 } \)

  10. \(\sqrt \frac{1-2x}{1+2x}\) is approximately equal to ______________

    (a)

    1- 2x-x2

    (b)

    1 + 2x+ x2

    (c)

    1+ 2x

    (d)

    1-2x+x2

  11. If a vertex of a square is at the origin and its one side lies along the line 4x + 3y - 20 = 0, then the area of the square is

    (a)

    20 sq. units

    (b)

    16 sq. units

    (c)

    25 sq. units

    (d)

    4 sq.units

  12. The length of the perpendicular from origin to line is \(\sqrt{3}x-y+24=0\) is ______________

    (a)

    2\(\sqrt{3}\)

    (b)

    8

    (c)

    24

    (d)

    12

  13. If A =\(\begin{bmatrix} 1& 2 &2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}\) is a matrix satisfying the equation AAT = 9I, where I is 3 \(\times\) 3 identity matrix, then the ordered pair (a, b) is equal to

    (a)

    (2, - 1)

    (b)

    (- 2, 1)

    (c)

    (2, 1)

    (d)

    (- 2, - 1)

  14. If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1 ), (x2, y2), (x3, y3 ) are

    (a)

    vertices of an equilateral triangle

    (b)

    vertices of a right angled triangle

    (c)

    vertices of a right angled isosceles triangle

    (d)

    collinear

  15. A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to

    (a)

    \(cos^{-1}({1\over 3})\)

    (b)

    \(cos^{-1}({2\over 3})\)

    (c)

    \(cos^{-1}({1\over\sqrt 3})\)

    (d)

    \(cos^{-1}({2\over\sqrt 3})\)

  16. If the projection of \(5\hat{i}-\hat{j}-3\hat{k}\) on the vector \(\hat{i}+3\hat{j}+\lambda\hat{k}\) is same as the projection of \(\hat{i}+3\hat{j}+\lambda\hat{k}\) on \(5\hat{i}-\hat{j}-3\hat{k}\)then \(\lambda\) is equal to

    (a)

    \(\pm 4\)

    (b)

    \(\pm 3\)

    (c)

    \(\pm 5\)

    (d)

    \(\pm 1\)

  17. \(lim_{x\rightarrow {\pi/2}}{2x-\pi\over cosx} \)

    (a)

    2

    (b)

    1

    (c)

    -2

    (d)

    0

  18. If f(x) = x2 - 3x, then the points at which f(x) = f '(x) are

    (a)

    both positive integers

    (b)

    both negative integers

    (c)

    both irrational

    (d)

    one rational and another irrational

  19. If \(f(x)= \begin{cases}2 a-x, & \text { for } \quad-a<x<a \\ 3 x-2 a & \text { for } \quad x \geq a\end{cases}\), then which one of the following is true?

    (a)

    f(x) is not differentiable at x = a

    (b)

    f(x) is discontinuous at x = a

    (c)

    f(x) is continuous for all x in R

    (d)

    f(x) is differentiable for all x \(\ge\) a

  20. \(\text { If } f(x)=\left\{\begin{array}{ll} a x^2-b, & -1<x<1 \\ \frac{1}{|x|}, & \text { elsewhere } \end{array} \ \text { is differentiable at } x=1\right. \text {, then }\) 

    (a)

    \(a={1\over2},b={-3\over 2}\)

    (b)

    \(a={-1\over2},b={3\over 2}\)

    (c)

    \(a=-{1\over2},b=-{3\over 2}\)

    (d)

    \(a={1\over2},b={3\over 2}\)

  21. \(\int \frac{e^x\left(x^2 \tan ^{-1} x+\tan ^{-1} x+1\right)}{x^2+1} d x\) is

    (a)

    ex tan-1(x+1)+c

    (b)

    tan-1(ex)+c

    (c)

    \(e^x{(tan^{-1}x)^2\over 2}+c\)

    (d)

    ex tan-1 x+c

  22. A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is

    (a)

    \({7\over 45}\)

    (b)

    \({17\over 90}\)

    (c)

    \({29\over 90}\)

    (d)

    \({19\over 90}\)

  23. A matrix is chosen at random from a set of all matrices of order 2, with elements 0 or 1 only. The probability that the determinant of the matrix chosen is non zero will be

    (a)

    \({3\over 16}\)

    (b)

    \({3\over 8}\)

    (c)

    \({1\over 4}\)

    (d)

    \({5\over 8}\)

  24. The probability of two events A and B are 0.3 and 0.6 respectively. The probability that both A and B occur simultaneously is 0.18. The probability that neither A nor B occurs is

    (a)

    0.1

    (b)

    0.72

    (c)

    0.42

    (d)

    0.28

  25. If m is a number such that m \(\le\) 5, then the probability that quadratic equation 2x2 + 2mx + m + 1 = 0 has real roots is

    (a)

    \({1\over 5}\)

    (b)

    \({2\over 5}\)

    (c)

    \({3\over 5}\)

    (d)

    \({4\over 5}\)

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment