New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - II

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    25 x 1 = 25
  1. If f(x) = |x - 2| + |x + 2|, x ∈ R, then

    (a)

    \(f(x)=\left\{\begin{array}{lll} -2 x & \text { if } & x \in(-\infty,-2] \\ 4 & \text { if } & x \in(-2,2] \\ 2 x & \text { if } & x \in(2, \infty) \end{array}\right.\)

    (b)

    \(f(x)=\begin{cases}2x\ if\ x∈(-∞,-2] \\4x\ if \ x∈(-2,2]\\ - 2x\ if\ x∈(2,∞)\end{cases}\)

    (c)

    \(f(x)=\begin{cases}-2x\ if\ x∈(-∞,-2] \\-4x\ if \ x∈(-2,2]\\ 2x\ if\ x∈(2,∞)\end{cases}\)

    (d)

    \(f(x)=\begin{cases}-2x\ if\ x∈(-∞,-2] \\2x\ if \ x∈(-2,2]\\ 2x\ if\ x∈(2,∞)\end{cases}\)

  2. Let R be the set of all real numbers. Consider the following subsets of the plane R x R: S = {(x, y) : y =x + 1 and 0 < x < 2} and T = {(x,y) : x - y is an integer} Then which of the following is true?

    (a)

    T is an equivalence relation but S is not an equivalence relation

    (b)

    Neither S nor T is an equivalence relation

    (c)

    Both S and T are equivalence relation

    (d)

    S is an equivalence relation but T is not an equivalence relation.

  3. The solution set of the following inequality |x-1| \(\ge\) |x-3| is

    (a)

    [0, 2]

    (b)

    \([2,\infty)\)

    (c)

    (0, 2)

    (d)

    \((-\infty,2)\)

  4. The value of \({ log }_{ \sqrt { 2 } }512\) is

    (a)

    16

    (b)

    18

    (c)

    9

    (d)

    12

  5. If \(\pi <2\theta <\frac { 3\pi }{ 2 } \), then \(\sqrt { 2+\sqrt { 2+2cos4\theta } } \) equals to

    (a)

    -2 cosፀ

    (b)

    -2 sinፀ

    (c)

    2 cosፀ

    (d)

    2 sinፀ

  6. If sin \(\theta\) + cos \(\theta\) = 1 then sin6 \(\theta\) + cos6 \(\theta\) is _______________

    (a)

    1

    (b)

    0

    (c)

    -1

    (d)

    2

  7. In an examination there are three multiple choice questions and each question has 5 choices. Number of ways in which a student can fail to get all answer correct is

    (a)

    125

    (b)

    124

    (c)

    64

    (d)

    63

  8. In 2nC3 : nC3 = 11 : 1 then n is

    (a)

    5

    (b)

    6

    (c)

    11

    (d)

    7

  9. (n-1)Cr + (n-1)C(r-1) is

    (a)

    (n+1)Cr

    (b)

    (n-1)Cr

    (c)

    nCr

    (d)

    nCr-1

  10. The number of ways of choosing 5 cards out of a deck of 52 cards which include at least one king is

    (a)

    52C5

    (b)

    48C5

    (c)

    52C5 + 48C5

    (d)

    52C5 - 48C5

  11. 1+3+5+7+........+17 is equal to

    (a)

    101

    (b)

    81

    (c)

    71

    (d)

    61

  12. If a, 8, b are in AP, a, 4, b are in GP, and if a, x, b are in HP then x is

    (a)

    2

    (b)

    1

    (c)

    4

    (d)

    16

  13. The coefficient of x5 in the series e-2x is

    (a)

    \(\frac { 2 }{ 3 } \)

    (b)

    \(\frac { 2 }{ 3 } \)

    (c)

    \(\frac { -4 }{ 15 } \)

    (d)

    \(\frac { 4 }{ 15 } \)

  14. The value of \(\frac { 1 }{ 2! } +\frac { 1 }{ 4! } +\frac { 1 }{ 6! } +....is\)

    (a)

    \(\frac { { e }^{ 2 }+1 }{ 2e } \)

    (b)

    \(\frac { { (e+1) }^{ 2 } }{ 2e } \)

    (c)

    \(\frac { { (e-1) }^{ 2 } }{ 2e } \)

    (d)

    \(\frac { { e }^{ 2 }+1 }{ 2e } \)

  15. The value of \(1-\frac { 1 }{ 2 } \left( \frac { 2 }{ 3 } \right) +\frac { 1 }{ 3 } { \left( \frac { 2 }{ 3 } \right) }^{ 2 }-\frac { 1 }{ 4 } { \left( \frac { 2 }{ 3 } \right) }^{ 2 }+....is\)

    (a)

    \(log\left( \frac { 5 }{ 3 } \right) \)

    (b)

    \(\frac { 3 }{ 2 } log\left( \frac { 5 }{ 3 } \right) \)

    (c)

    \(\frac { 5 }{ 3 } log\left( \frac { 5 }{ 3 } \right) \)

    (d)

    \(\frac { 2 }{ 3 } log\left( \frac { 2 }{ 3 } \right) \)

  16. Expansion of \(log(\sqrt \frac{1+x}{1-x})\) is ______________

    (a)

    \(x+\frac{x^3}{3}+\frac{x^5}{5}+...\)

    (b)

    \(1.\frac{x^2}{2}+\frac{x^4}{4}+...\)

    (c)

    \(1-x+\frac{x^2}{2}+\frac{x^3}{5}+...\)

    (d)

    \(x-\frac{x^2}{3}+\frac{x^3}{3}+...\)

  17. The value of \(1-\frac{1}{2}(\frac{3}{4})+\frac{1}{3}(\frac{3}{4})^2-\frac{1}{4}(\frac{3}{4})^3+...\)is ______________

    (a)

    \(\frac{3}{4}log(\frac{7}{4})\)

    (b)

    \(\frac{4}{3}log(\frac{7}{4})\)

    (c)

    \(\frac{1}{3}log(\frac{7}{4})\)

    (d)

    \(\frac{4}{3}log(\frac{4}{7})\)

  18. The slope of the line which makes an angle 45o with the line 3x- y = -5 are:

    (a)

    1, -1

    (b)

    \(\frac{1}{2},-2\)

    (c)

    \(1,\frac{1}{2}\)

    (d)

    \(2,-\frac{1}{2}\)

  19. Equation of the straight line that forms an isosceles triangle with coordinate axes in the I-quadrant with perimeter 4 + 2\(\sqrt{2}\) is

    (a)

    x + y + 2 = 0

    (b)

    x + y - 2 = 0

    (c)

    \(x+y-\sqrt{2}=0\)

    (d)

    \(x+y+\sqrt{2}=0\)

  20. The line (p + 2q)x + (p - 3q)y = p - q for different values of p and q passes through the point

    (a)

    \(\left(\frac{3}{5},\frac{5}{2}\right)\)

    (b)

    \(\left(\frac{2}{5},\frac{2}{5}\right)\)

    (c)

    \(\left(\frac{3}{5},\frac{3}{5}\right)\)

    (d)

    \(\left(\frac{2}{5},\frac{3}{5}\right)\)

  21. If the lines represented by the equations 6x+ 41xy - 7y= 0 make angles α and β with x-axis, then \(tan \ \alpha\tan \ \beta=\)

    (a)

    \(-\frac{6}{7}\)

    (b)

    \(\frac{6}{7}\)

    (c)

    \(-\frac{7}{6}\)

    (d)

    \(\frac{7}{6}\)

  22. If the lines x + q = 0, y - 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be ______________

    (a)

    2

    (b)

    2

    (c)

    3

    (d)

    5

  23. A point equi-distant from the line 4x + 3y + 10 = 0, 5x -12y + 26 = 0 and 7x + 24y - 50 = 0 is ______________

    (a)

    (1, -1)

    (b)

    (1, 1)

    (c)

    (0, 0)

    (d)

    (0, 1)

  24. If aij = \({1\over2}(3i-2j)\) and A = [aij]2x2 is

    (a)

    \(\begin{bmatrix} {1\over 2}& 2 \\ -{1\over2} & 1 \end{bmatrix}\)

    (b)

    \(\begin{bmatrix} {1\over 2}& -{1\over2} \\ 2& 1 \end{bmatrix}\)

    (c)

    \(\begin{bmatrix} 2& 2\\ {1\over 2}& -{1\over2} \end{bmatrix}\)

    (d)

    \(\begin{bmatrix} -{1\over 2}& {1\over2} \\ 1& 2 \end{bmatrix}\)

  25. If the points (x,−2), (5, 2), (8, 8) are collinear, then x is equal to

    (a)

    -3

    (b)

    \({1\over 3}\)

    (c)

    1

    (d)

    3

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - II

Write your Comment