New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Creative 1 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 25

    1 Marks

    25 x 1 = 25
  1. The shaded region in the adjoining diagram represents.

    (a)

    A\B

    (b)

    B\A

    (c)

    AΔB

    (d)

    A'

  2. For real numbers x and y, define xRy if x - y + √2 is an irrational number. Then the relation R is __________

    (a)

    reflexive

    (b)

    symmetric

    (c)

    transitive

    (d)

    none of these

  3. The number of reflective relations one set containing n elements is __________

    (a)

    212

    (b)

    24

    (c)

    216

    (d)

    28

  4. Which one of the following statements is false? The graph of the function \(f(x)={1\over x}\)

    (a)

    exist is the first and third quadrant only

    (b)

    is a reciprocal function

    (c)

    is defined at x = 0

    (d)

    it is symmetric about y = x and y = - x.

  5. Which one of the following is not a singleton set?

    (a)

    A = {x : 3x - 5 = 0, x ∈ Q}

    (b)

    B = {| x | = 1 / x ∈ Z}

    (c)

    {x : x3 - 1 = 0, x ∈ R}

    (d)

    {x : 30x = 60, x ∈ N}

  6. The rationalising factor of \(\frac { 5 }{ \sqrt [ 3 ]{ 3 } } \) is

    (a)

    \(\sqrt [ 3 ]{ 6 } \)

    (b)

    \(\sqrt [ 3 ]{ 3 } \)

    (c)

    \(\sqrt [ 3 ]{ 9 } \)

    (d)

    \(\sqrt [ 3 ]{ 27 } \)

  7. The number of real solution of |2x - x2- 3| = 1 is ___________

    (a)

    0

    (b)

    2

    (c)

    3

    (d)

    4

  8. (x2-2x+2)(x2+2x+2) are the factors of the polynomial ___________

    (a)

    (x2-2x)2

    (b)

    x4-4

    (c)

    x4+4

    (d)

    (x2-2x+2)2

  9. Given \(|\frac{3}{x-4}|<1\) then ___________

    (a)

    x∈(∞,3)

    (b)

    x∈(4, ∞)

    (c)

    x∈(1, 7)

    (d)

    x∈(1, 4)U(4, 7)

  10. Solve 3x2 + 5x - 2≤0

    (a)

    (2,\(\frac{1}{3}\))

    (b)

    [2,\(\frac{1}{3}\)]

    (c)

    (-2,\(\frac{1}{3}\))

    (d)

    (-2,\(\frac{-1}{3}\))

  11. Zero of the polynomial p(x) = x2 - 4x + 4

    (a)

    1

    (b)

    2

    (c)

    -2

    (d)

    -1

  12. The value of \(\sqrt [ 4 ]{ { (-2) }^{ 4 } } =\) _______.

    (a)

    2

    (b)

    -2

    (c)

    4

    (d)

    -4

  13. If the angles of a triangle are in A.P., then the measure of one of the angles in radians is ___________

    (a)

    \(\frac { \pi }{ 6 } \)

    (b)

    \(\frac { \pi }{ 3 } \)

    (c)

    \(\frac { \pi }{ 2 } \)

    (d)

    \(\frac { 2\pi }{ 3 } \)

  14. If tan x = \(\frac { -1 }{ \sqrt { 5 } } \) and x lies in the IV quadrant, then the value of cos x is ___________

    (a)

    \(\sqrt { \frac { 5 }{ 6 } } \)

    (b)

    \(\frac { 2 }{ \sqrt { 6 } } \)

    (c)

    \(\frac { 1 }{ 2 } \)

    (d)

    \(\frac { 1 }{ \sqrt { 6 } } \)

  15. The value of sin2\(\frac { 5\pi }{ 12 } -sin^{ 2 }\frac { \pi }{ 12 } \) is ___________

    (a)

    \(\frac { 1 }{ 2 } \)

    (b)

    \(\frac { \sqrt { 3 } }{ 2 } \)

    (c)

    1

    (d)

    0

  16. cos 35+ cos 85+ cos 155= _______________

    (a)

    0

    (b)

    \(\frac { 1 }{ \sqrt { 3 } } \)

    (c)

    \(\frac { 1 }{ \sqrt { 2 } } \)

    (d)

    cos 2750

  17. 2tan-1\(\left( \frac { 1 }{ 5 } \right) \) is equal to _______________

    (a)

    tan\(\left( \frac { 5 }{ 12 } \right) \)

    (b)

    \(\frac { 5 }{ 12 } \)

    (c)

    \(\tan^{-1}\left({5 \over 12}\right)\)

    (d)

    tan-1\(\frac { 2 }{ 5 } \)

  18. If 2 sin θ + 1 = 0 and \(\sqrt{3}\) tan θ = 1, then the most general value of θ is _______________

    (a)

    \(n\pi\pm\frac{\pi}{6}\)

    (b)

    \(n\pi+(-1)^n\frac{7\pi}{6}\)

    (c)

    \(2n\pi+\frac{7\pi}{6}\)

    (d)

    \(2n\pi+\frac{11\pi}{6}\)

  19. If ABCD is a cyclic quadrilateral then cos A + cos B + cos C + cos D = _______________

    (a)

    1

    (b)

    -1

    (c)

    0

    (d)

    None

  20. \(\frac{1}{360}\) of a complete rotation clockwise is _______________

    (a)

    -1°

    (b)

    -360°

    (c)

    -90°

    (d)

  21. Choose the incorrect pair:

    (a)

    sinx - x ∈ R

    (b)

    cos x - x ∈ R

    (c)

    log x x > 0

    (d)

    e-x - x > 0

  22. Choose the incorrect pair:

    (a)

    sin x in IInd quadrant

    (b)

    cos x in Ist quadrant 1

    (c)

    sec x in IIst quadrant -2

    (d)

    tan x in IIIrd quadrant20

  23. Find the incorrect pair

    (a)

    \(\\ \frac { a }{ sin\ A } =\frac { b }{ sin\ B } =\frac { C }{ sin\ C } \) - 2R

    (b)

    \(\frac { { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } }{ 2bc } \) - cos A

    (c)

    \(\frac { a-b }{ a+b } cot\frac { c }{ 2 } \) - tan\(\frac{A-B}{2}\)

    (d)

    \(\frac { { a }^{ 2 }+{ c }^{ 2 }-{ b }^{ 2 } }{ 2ac } \) - cos C

  24. If mC1 = nC2, then _________

    (a)

    2m = n

    (b)

    2m = n(n+1)

    (c)

    2m = n(n-1)

    (d)

    2n=m(m-1)

  25. Among the players 5 are bowlers. In how many ways a team of 11 may be formed with atleast 4 bowlers?

    (a)

    265

    (b)

    263

    (c)

    264

    (d)

    275

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Creative 1 Mark Questions with Solution Part - I

Write your Comment