New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Differentiability and Methods of Differentiation BookBack 1 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    10 x 1 = 10
  1. The differential coefficient of log10 x with respect to logx10 is

    (a)

    1

    (b)

    -(log10 x)2

    (c)

    (logx 10)2

    (d)

    \(x^2\over100\)

  2. If f(x) = x + 2, then f '(f(x)) at x = 4 is

    (a)

    8

    (b)

    1

    (c)

    4

    (d)

    5

  3. It is given that f '(a) exists, then \(lim_{x\rightarrow a}{xf(a)-af(x)\over x-a}\) is

    (a)

    f(a) - af '(a)

    (b)

    f '(a)

    (c)

    - f '(a)

    (d)

    f(a) + af '(a)

  4. If \(f(x)=\left\{\begin{array}{l} x+1, \quad \text { when } x<2 \\ 2 x-1 \text { when } x \geq 2 \end{array}\right.\), then f'(2) is

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    does not exist

  5. If g(x) = (x2 + 2x + 3) f(x) and f(0) = 5 and \(lim_{x \rightarrow 0}{f(x)-5\over x}=4\)then g'(0) is

    (a)

    20

    (b)

    14

    (c)

    18

    (d)

    12

  6. If f(x) = \(\left\{\begin{matrix} x+2& -1<x<3\\ 5,& x=3\\ 8-x,& x>3\\ \end{matrix}\right.\), then at x = 3, f'(x) is:

    (a)

    1

    (b)

    -1

    (c)

    0

    (d)

    does not exist

  7. The derivative of f(x) = x |x| at x = −3 is

    (a)

    6

    (b)

    -6

    (c)

    does not exist

    (d)

    0

  8. If \(f(x)= \begin{cases}2 a-x, & \text { for } \quad-a<x<a \\ 3 x-2 a & \text { for } \quad x \geq a\end{cases}\), then which one of the following is true?

    (a)

    f(x) is not differentiable at x = a

    (b)

    f(x) is discontinuous at x = a

    (c)

    f(x) is continuous for all x in R

    (d)

    f(x) is differentiable for all x \(\ge\) a

  9. \(\text { If } f(x)=\left\{\begin{array}{ll} a x^2-b, & -1<x<1 \\ \frac{1}{|x|}, & \text { elsewhere } \end{array} \ \text { is differentiable at } x=1\right. \text {, then }\) 

    (a)

    \(a={1\over2},b={-3\over 2}\)

    (b)

    \(a={-1\over2},b={3\over 2}\)

    (c)

    \(a=-{1\over2},b=-{3\over 2}\)

    (d)

    \(a={1\over2},b={3\over 2}\)

  10. The number of points in R in which the function \(f(x)=|x-1|+|x-3|+sin \ x\) is not differentiable, is

    (a)

    3

    (b)

    2

    (c)

    1

    (d)

    4

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Differentiability and Methods of Differentiation BookBack 1 Mark Questions with Solution Part - I

Write your Comment