New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Differential Calculus - Limits and Continuity Book Back 1 Mark Questions with Solution Part - II

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    10 x 1 = 10
  1. \(lim_{\alpha \rightarrow {\pi/4}}{sin \alpha -cos \alpha \over \alpha -{\pi\over 4}}\) is

    (a)

    \(\sqrt{2}\)

    (b)

    \(1\over \sqrt{2}\)

    (c)

    1

    (d)

    2

  2. \(lim_{n \rightarrow \infty}({1\over n^2}+{2\over n^2}+{3\over n^2}+..+{n\over n^2})\) is

    (a)

    \(1\over 2\)

    (b)

    0

    (c)

    1

    (d)

    \(\infty\)

  3. \(lim_{x \rightarrow 0}{e^{sin \ x}-1\over x}=\)

    (a)

    1

    (b)

    e

    (c)

    \({1\over e}\)

    (d)

    0

  4. \(lim_{x \rightarrow 0}{e^{tan \ x}-e^x\over tan x-x}=\)

    (a)

    1

    (b)

    e

    (c)

    \({1\over2}\)

    (d)

    0

  5. The value of \(lim_{x\rightarrow k^-}x-\left\lfloor x \right\rfloor \)where k is an integer is

    (a)

    -1

    (b)

    1

    (c)

    0

    (d)

    2

  6. At x \(={3\over 2}\) the function \(f(x)={|2x-3|\over 2x-3}\) is

    (a)

    continuous

    (b)

    discontinuous

    (c)

    differentiable

    (d)

    non-zero

  7. Let f :\(R \rightarrow R\) be defined by \(f(x)= \begin{cases}x & x \text { is irrational } \\ 1-x & x \text { is rational }\end{cases}\)  then f is

    (a)

    discontinuous at x = \({1\over 2}\)

    (b)

    continuous at  x = \({1\over 2}\)

    (c)

    continuous everywhere

    (d)

    discontinuous everywhere

  8. The function \(f(x)= \begin{cases}\frac{x^{2}-1}{x^{3}+1} & x \neq-1 \\ P & x=-1\end{cases}\)is not defined for x = −1. The value of f(−1) so that the function extended by this value is continuous is

    (a)

    \({2\over3}\)

    (b)

    -\({2\over3}\)

    (c)

    1

    (d)

    0

  9. Let f be a continuous function on [2, 5]. If f takes only rational values for all x and f(3) = 12, then f(4.5) is equal to

    (a)

    \({f(3)+f(4.5)\over 7.5}\)

    (b)

    12

    (c)

    17.5

    (d)

    \(f(4.5)-f(3)\over 1.5\)

  10. Let a function f be defined by \(f(x)={x-|x|\over x}\) for x \(\neq\) 0 and f(0) = 2. Then f is

    (a)

    continuous nowhere

    (b)

    continuous everywhere

    (c)

    continuous for all x except x = 1

    (d)

    continuous for all x except x = 0

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Differential Calculus - Limits and Continuity Book Back 1 Mark Questions with Solution Part - II

Write your Comment