New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Matrices and Determinants Book Back 1 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    10 x 1 = 10
  1. If aij = \({1\over2}(3i-2j)\) and A = [aij]2x2 is

    (a)

    \(\begin{bmatrix} {1\over 2}& 2 \\ -{1\over2} & 1 \end{bmatrix}\)

    (b)

    \(\begin{bmatrix} {1\over 2}& -{1\over2} \\ 2& 1 \end{bmatrix}\)

    (c)

    \(\begin{bmatrix} 2& 2\\ {1\over 2}& -{1\over2} \end{bmatrix}\)

    (d)

    \(\begin{bmatrix} -{1\over 2}& {1\over2} \\ 1& 2 \end{bmatrix}\)

  2. What must be the matrix X, if 2x +\(\begin{bmatrix} 1& 2 \\ 3 & 4 \end{bmatrix}=\begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}?\)

    (a)

    \(\begin{bmatrix} 1& 3 \\ 2 &-1 \end{bmatrix}\)

    (b)

    \(\begin{bmatrix} 1& -3 \\ 2 &-1 \end{bmatrix}\)

    (c)

    \(\begin{bmatrix} 2& 6 \\ 4 &-2 \end{bmatrix}\)

    (d)

    \(\begin{bmatrix} 2& -6 \\ 4 &-2 \end{bmatrix}\)

  3. If A is a square matrix, then which of the following is not symmetric?

    (a)

    A + AT

    (b)

    AAT

    (c)

    AT A

    (d)

    A − AT

  4. If A = \(\begin{bmatrix}a & x \\ y& a \end{bmatrix}\) and if xy = 1, then det (A AT ) is equal to

    (a)

    (a −1)2

    (b)

    (a2 +1)2

    (c)

    a2 −1

    (d)

    (a2 −1)2

  5. The value of x, for which the matrix A = \(\begin{bmatrix} e^{x-2}& e^{7+x} \\ e^{2+x} & e^{2x+3} \end{bmatrix}\) is singular

    (a)

    9

    (b)

    8

    (c)

    7

    (d)

    6

  6. If the points (x,−2), (5, 2), (8, 8) are collinear, then x is equal to

    (a)

    -3

    (b)

    \({1\over 3}\)

    (c)

    1

    (d)

    3

  7. If \(\begin{vmatrix}2a & x_1 &y_1 \\ 2b & x_2 & y_2 \\ 2c & x_3 &y_3 \end{vmatrix}={abc\over 2}\neq 0,\) then the area of the triangle whose vertices are \(\begin{pmatrix} {x_1\over a}, {y_1\over a} \end{pmatrix}\)\(\begin{pmatrix} {x_2\over b}, {y_2\over b} \end{pmatrix}\)\(\begin{pmatrix} {x_3\over c}, {y_3\over c} \end{pmatrix}\) is

    (a)

    \({1\over 4}\)

    (b)

    \({1\over 4} abc\)

    (c)

    \({1\over 8}\)

    (d)

    \({1\over 8}abc\)

  8. If the square of the matrix \(\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}\) is the unit matrix of order 2, then \(\alpha ,\beta \) and \(\gamma\) should satisfy the relation.

    (a)

    1 + \(\alpha ^2+\beta \gamma=0\)

    (b)

    1 - \(\alpha ^2-\beta \gamma=0\)

    (c)

    1 - \(\alpha ^2+\beta \gamma=0\)

    (d)

    1 + \(\alpha ^2-\beta \gamma=0\)

  9. If \(\triangle\) = \(\begin{vmatrix} a&b &c \\ x & y & z \\ p &q &r \end{vmatrix}\)then \(\begin{vmatrix} ka&kb &kc \\ kx & ky & kz \\k p &kq &kr \end{vmatrix}\) is

    (a)

    \(\triangle\)

    (b)

    k\(\triangle\)

    (c)

    3k\(\triangle\)

    (d)

    k3\(\triangle\)

  10. A root of the equation \(\begin{vmatrix} 3-x&-6 &3 \\ -6 & 3-x & 3 \\ 3 &3 &-6-x \end{vmatrix}=0 \ is\)

    (a)

    6

    (b)

    3

    (c)

    0

    (d)

    -6

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Matrices and Determinants Book Back 1 Mark Questions with Solution Part - I

Write your Comment