New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Sets, Relations and Functions Book Back 1 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 10

    1 Marks

    10 x 1 = 10
  1. The number of constant functions from a set containing m elements to a set containing n elements is

    (a)

    mn

    (b)

    m

    (c)

    n

    (d)

    m+n

  2. The function f:[0,2π]➝[-1,1] defined by f(x) = sin x is

    (a)

    one-to-one

    (b)

    on to

    (c)

    bijection

    (d)

    cannot be defined

  3. If the function f:[-3,3]➝S defined by f(x) = x2 is onto, then S is

    (a)

    [-9,9]

    (b)

    R

    (c)

    [-3,3]

    (d)

    [0,9]

  4. Let X = {1, 2, 3, 4}, Y = {a, b, c, d} and f = {(1, a), (4, b), (2, c), (3, d), (2, d)}. Then f is

    (a)

    an one-to-one function

    (b)

    an onto function

    (c)

    a function which is not one-to-one

    (d)

    not a function

  5. The inverse of f(x) = \(\begin{cases} x\quad if\quad x<1 \\ { x }^{ 2 }\quad if\quad 1\le x\le 4 \\ 8\sqrt { x } \quad if\quad x>4 \end{cases}\) is

    (a)

    \({ f }^{ -1 }(x)=\begin{cases} x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (b)

    \({ f }^{ -1 }(x)=\begin{cases} -x\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (c)

    \({ f }^{ -1 }(x)=\begin{cases} { x }^{ 2 }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 64 } \quad if\quad x>16 \end{cases}\)

    (d)

    \({ f }^{ -1 }(x)=\begin{cases} { 2x }\quad if\quad x<1 \\ \sqrt { x } \quad if\quad 1\le x\le 16 \\ \frac { { x }^{ 2 } }{ 8 } \quad if\quad x>16 \end{cases}\)

  6. Let f:R➝R be defined by f(x) = 1 - |x|. Then the range of f is

    (a)

    R

    (b)

    (1,∞)

    (c)

    (-1,∞)

    (d)

    (-∞,1]

  7. The function f:R➝R be defined by f(x) = sinx + cosx is

    (a)

    an odd function

    (b)

    neither an odd function nor an even function

    (c)

    an even function

    (d)

    both odd function and even function

  8. The function f:R➝R is defined by f(x)=\(\frac { \left( { x }^{ 2 }+cosx \right) \left( 1+{ x }^{ 4 } \right) }{ \left( x-sinx \right) \left( 2x-{ x }^{ 3 } \right) } +{ e }^{ -\left| x \right| }\) is

    (a)

    an odd function

    (b)

    neither an odd function nor an even function

    (c)

    an even function

    (d)

    both odd function and even function.

  9. If A = {(x,y) : y = ex, x∈R} and B = {(x,y) : y = e-x, x ∈ R} then n(A∩B) is

    (a)

    Infinity

    (b)

    0

    (c)

    1

    (d)

    2

  10. If A = {(x,y) : y = sin x, x ∈ R} and B = {(x,y) : y = cos x, x ∈ R} then A∩B contains

    (a)

    no element

    (b)

    infinitely many elements

    (c)

    only one element

    (d)

    cannot be determined

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Sets, Relations and Functions Book Back 1 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment