New ! Maths MCQ Practise Tests



11th Standard English Medium Maths Subject Trigonometry Book Back 3 Mark Questions with Solution Part - I

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30

    3 Marks

    10 x 3 = 30
  1. Show that \(\frac { (cos\theta -cos3\theta )(sin8\theta +sin2\theta ) }{ (sin5\theta -sin\theta )(cos4\theta -cos6\theta ) } =1\)

  2. If \(\sin { x } =\frac { 15 }{ 17 } \) and \(\cos {y } =\frac { 12 }{ 13 } \), 0 < x < \(\frac{\pi}{2}\), 0 < y < \(\frac{\pi}{2}\), find the value of sin (x + y)

  3. Find cos(x - y), given that cos x = \(-\frac{4}{5}\) with \(\pi<x<{{3\pi}\over{2}}\) and \(sin \ y = -{{24}\over{25}}\) with \(\pi<x<{{3\pi}\over{2}}\)

  4. For each given Angle, find a coterminal angle with a measure of \(\theta\) such that \(0^o\le \theta \le 360°\) 
    3950 

  5. Prove that \(sinx+sin2x+sin3x=sin2x(1+2cosx)\)

  6. Prove that \(\frac { sin4x+sin2x }{ cos4x+cos2x } =tan3x\)

  7. If a cos \(\theta\) - b sin \(\theta\) = c, show that a sin \(\theta\) + b cos \(\theta\) = \(\pm \sqrt { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } } \)

  8. If sin \(\theta\) + cos \(\theta\) = m, show that cos6\(\theta\) + sin6\(\theta\)  = \(\frac { 4-3({ m }^{ 2 }-1)^{ 2 } }{ 4 } \), where m2 \(\le \) 2

  9. What must be the radius of a circular running path, around which an athlete must run 5 times in order to describe 1 km?

  10. If in two Circles, arcs of the same length subtend angles 600 and 750 at the center, find the ratio of their radii

*****************************************

Reviews & Comments about 11th Standard English Medium Maths Subject Trigonometry Book Back 3 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment