New ! Maths MCQ Practise Tests



11th Standard Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Seven

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:10:00 Hrs
Total Marks : 10

    Answer all the questions

    10 x 1 = 10
  1. If A = {(x,y) : y = ex, x∈R} and B = {(x,y) : y = e-x, x ∈ R} then n(A∩B) is

    (a)

    Infinity

    (b)

    0

    (c)

    1

    (d)

    2

  2. If the roots of x2-bx + c = 0 are two consecutive integer,then b2- 4c is ___________

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    none of these

  3. Logarithm of 144 to the base 2\(\sqrt{3}\) is ___________

    (a)

    2

    (b)

    3

    (c)

    4

    (d)

    5

  4. The value of \(\sqrt [ 4 ]{ { (-2) }^{ 4 } } =\) _______.

    (a)

    2

    (b)

    -2

    (c)

    4

    (d)

    -4

  5. cos 6x - cos 8x = _______________

    (a)

    2 sin 7x sin x

    (b)

    sin 7x sin x

    (c)

    \(\frac { 1 }{ 2 } \)sin 7x + sin x

    (d)

    \(\sqrt { 2 } \) sin7x sin x

  6. If sin θ = sin \(\alpha\), then the angles θ and \(\alpha\) are related by _______________

    (a)

    \(\theta=n\pi\pm\alpha\)

    (b)

    \(\theta=2n\pi+(-1)^n\alpha\)

    (c)

    \(\alpha=n\pi\pm(-1)^n\theta\)

    (d)

    \(\theta=(2n+1)\pi+\alpha\)

  7. The value of x, for which the matrix A = \(\begin{bmatrix} e^{x-2}& e^{7+x} \\ e^{2+x} & e^{2x+3} \end{bmatrix}\) is singular

    (a)

    9

    (b)

    8

    (c)

    7

    (d)

    6

  8. \(\int \frac{x^2+\cos ^2 x}{x^2+1} \operatorname{cosec}^2 x d x\) is

    (a)

    cot x + sin -1x + c

    (b)

    -cot x + tan-1x + c

    (c)

    -tan x + cot-1x + c

    (d)

    -cot x - tan-1x + c

  9. \(\int x^2 e^{\frac{x}{2}} d x\) is

    (a)

    \( x^2e^{x\over2}-4xe^{x\over2}-8e^{x\over2}+c\)

    (b)

    \( 2x^2e^{x\over2}-8xe^{x\over2}-16e^{x\over2}+c\)

    (c)

    \( 2x^2e^{x\over2}-8xe^{x\over2}+16e^{x\over2}+c\)

    (d)

    \( x^2{e^{x\over2}\over 2}-{xe^{x\over2}\over 4}+{e^{x\over2}\over 8}+c\)

  10. If a and b are chosen randomly from the set {1,2,3,4} with replacement, then the probability of the real roots of the equation \(x^2+ax+b=0\) is

    (a)

    \({3\over 16}\)

    (b)

    \({5\over 16}\)

    (c)

    \({7\over 16}\)

    (d)

    \({11\over 16}\)

*****************************************

Reviews & Comments about 11th Standard Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Seven

Write your Comment