New ! Maths MCQ Practise Tests



Integral Calculus Model Question Paper

11th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:00:00 Hrs
Total Marks : 60
    10 x 1 = 10
  1. If \(\int f(x) d x=g(x)+c\), then \(\int f(x) g^{\prime}(x) d x\)

    (a)

    \(\int (f(x))^2dx\)

    (b)

    \(\int f(x)g(x)dx\)

    (c)

    \(\int f'(x)g(x)dx\)

    (d)

    \(\int (g(x))^2dx\)

  2. \(\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x\) is

    (a)

    x+c

    (b)

    \({x^3\over 3}+c\)

    (c)

    \({3\over x^3}+c\)

    (d)

    \({1\over x^2}+c\)

  3. \(\int \tan ^{-1} \sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}} d x\) is

    (a)

    x2+c

    (b)

    2x2+c

    (c)

    \({x^2\over2}+c\)

    (d)

    \(-{x^2\over2}+c\)

  4. \(\int \frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x} d x\) is

    (a)

    \({1\over2}sin 2x+c\)

    (b)

    \(-{1\over2}sin 2x+c\)

    (c)

    \({1\over2}cos 2x+c\)

    (d)

    \(-{1\over2}cos 2x+c\)

  5. \(\int \frac{x^2+\cos ^2 x}{x^2+1} \operatorname{cosec}^2 x d x\) is

    (a)

    cot x + sin -1x + c

    (b)

    -cot x + tan-1x + c

    (c)

    -tan x + cot-1x + c

    (d)

    -cot x - tan-1x + c

  6. \(\int \sqrt{\frac{1-x}{1+x}} d x\) is

    (a)

    \(\sqrt{1-x^2}+sin^{-1}x+c\)

    (b)

    \(sin^{-1}x-\sqrt{1-x^2}+c\)

    (c)

    \(log|x+\sqrt{1-x^2}|-\sqrt{1-x^2}+c\)

    (d)

    \(\sqrt{1-x^2}+log|x+\sqrt{1-x^2}|+c\)

  7. \(\int \frac{d x}{e^x-1}\) is

    (a)

    \(log|e^x|-log|e^x-1|+c\)

    (b)

    \(log|e^x|+log|e^x-1|+c\)

    (c)

    \(log|e^x-1|-log|e^x|+c\)

    (d)

    \(log|e^x+1|-log|e^x|+c\)

  8. \(\int x^2 e^{\frac{x}{2}} d x\) is

    (a)

    \( x^2e^{x\over2}-4xe^{x\over2}-8e^{x\over2}+c\)

    (b)

    \( 2x^2e^{x\over2}-8xe^{x\over2}-16e^{x\over2}+c\)

    (c)

    \( 2x^2e^{x\over2}-8xe^{x\over2}+16e^{x\over2}+c\)

    (d)

    \( x^2{e^{x\over2}\over 2}-{xe^{x\over2}\over 4}+{e^{x\over2}\over 8}+c\)

  9. \(\int \frac{x+2}{\sqrt{x^2-1}} d x\) is

    (a)

    \(\sqrt{x^2-1}-2 log|x+\sqrt{x^2-1}|+c\)

    (b)

    \(sin^{-1}x-2 log|x+\sqrt{x^2-1}|+c\)

    (c)

    \(2 log|x+\sqrt{x^2-1}|-sin^{-1}x+c\)

    (d)

    \(\sqrt{x^2-1}+2log|x+\sqrt{x^2-1}|+c\)

  10. \(\int e^{\sqrt{x}} d x\) is

    (a)

    \(2\sqrt{x}(1-e^{\sqrt{x}})+c\)

    (b)

    \(2\sqrt{x}(e^{\sqrt{x}}-1)+c\)

    (c)

    \(2e^{\sqrt{x}}(1-\sqrt{x})+c\)

    (d)

    \(2e^{\sqrt{x}}(\sqrt{x}-1)+c\)

  11. 10 x 2 = 20
  12. Integrate the following with respect to x : x10

  13. Integrate the following with respect to x : \({1\over cos^2 \ x}\)

  14. Integrate the following with respect to x : \({1\over 1+x^2}\)

  15. Integrate the following with respect to x : \({1\over (3x-2)}\)

  16. If f '(x) = 4x - 5 and f(2) = 1, find f(x).

  17. Evaluate : \(\int e^{xlog2}e^x dx\)

  18. Integrate the following functions with respect to x : (2x − 5)(36 + 4x)

  19. Integrate the following with respect to x : eax cos bx

  20. Evaluate the following integrals : \(\int{1\over (x+2)^2+1}dx\)

  21. 5 x 3 = 15
  22. Integrate the following with respect to x : 123

  23. Integrate the following functions with respect to x : e3x - 6

  24. Evaluate the following integrals : \({15\over \sqrt{5x-4}}-8cot (4x+2)cosec(4x+2)\)

  25. Evaluate :\(\int(tan \ x+cot \ x)^2dx\)

  26. Integrate the following functions with respect to x : \({1+cos \ 4x \over cot \ x-tan \ x}\)

  27. 3 x 5 = 15
  28. Integrate the following with respect to x : \((1+x^2)^{-1}\)

  29. A tree is growing so that, after t - years its height is increasing at a rate of \({18\over \sqrt{t}}\) cm per year Assume that when t = 0, the height is 5 cm.
    (i) Find the height of the tree after 4 years.
    (ii) After how many years will the height be 149 cm?

  30. Integrate the following functions with respect to x : \(x+1\over (x+2)(x+3)\)

*****************************************

Reviews & Comments about 11th Standard Maths - Integral Calculus Model Question Paper

Write your Comment