New ! Maths MCQ Practise Tests



Applications of Vector Algebra Three Marks Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30
    10 x 3 = 30
  1. Dot product of a vector with vector \(\overset { \wedge }{ 3i } -5\overset { \wedge }{ k } \)\(2\overset { \wedge }{ i } +7\overset { \wedge }{ j } \) and \(\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) are respectively -1, 6 and 5. Find the vector.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    \(\overset { \rightarrow }{ b } \)\(\overset { \rightarrow }{ d } \)

  2. Find the Cartesian form of the equation of the plane \(\overset { \rightarrow }{ r } =\left( s-2t \right) \overset { \wedge }{ i } +\left( 3-t \right) \overset { \wedge }{ j } +\left( 2s+t \right) \overset { \wedge }{ k } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    s, t

  3. Find the equation of the plane through the intersection of the planes 2x-3y+ z-4 -0 and x - y + z + 1 = 0 and perpendicular to the plane x + 2y - 3z + 6 = 0

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    \(\overset { \rightarrow }{ a } \)\(\overset { \rightarrow }{ c } \)

  4. Find the angle between the line \(\frac { x-2 }{ 3 } =\frac { y-1 }{ -1 } =\frac { z-3 }{ 2 } \) and the plane 3x + 4y + z + 5 = 0

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    ∈ R

  5. If \(\overset { \rightarrow }{ a } =\overset { \wedge }{ i } -\overset { \wedge }{ j } ,\overset { \rightarrow }{ b } =\overset { \wedge }{ j } -\overset { \wedge }{ k } ,\overset { \rightarrow }{ c } =\overset { \wedge }{ k } -\overset { \wedge }{ i } \) then find \(\left[ \overset { \rightarrow }{ a } -\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ b } -\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } -\overset { \rightarrow }{ a } \right] \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    parametric form od vector equation

  6. Prove that \(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } \right] \)=\(\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    0

  7. Prove by vector method, that in a right angled triangle the square of the hypotenuse is equal to the sum of the square of the other two sides.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    Cartesian equation

  8. If \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0\) then show that \(\overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } =\overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } =\overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    lies in the plane containing \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \)

  9. Show that the four points whose position vectors are \(6\overset { \wedge }{ i } -7\overset { \wedge }{ j } ,16\overset { \wedge }{ i } -29\overset { \wedge }{ j } -4\overset { \wedge }{ k } ,3\overset { \wedge }{ i } -6\overset { \wedge }{ j } \) are co-planar

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    1

  10. Show that the lines \(\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-1 }{ 5 } \) and \(\frac { x+2 }{ 4 } =\frac { y-1 }{ 3 } =\frac { z+1 }{ -2 } \) do not intersect

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    a, b, c

*****************************************

Reviews & Comments about 12th Maths - Applications of Vector Algebra Three Marks Questions

Write your Comment