New ! Maths MCQ Practise Tests



Applications of Vector Algebra Two Marks Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 30
    15 x 2 = 30
  1. Find the parametric form of vector equation and Cartesian equations of the straight line passing through the point (−2, 3, 4) and parallel to the straight line \(\frac { x-1 }{ -4 } =\frac { y+3 }{ 5 } =\frac { 8-z }{ 6 } \)

  2. Find the vector and Cartesian equations of the plane passing through the point with position vector \(4\hat { i } +2\hat { j } -3\hat { k } \) and normal to vector \(2\hat { i } -\hat { j } +\hat { k } \)

  3. A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point

  4. Find the vector and Cartesian equations of the plane passing through the point with position vector \(2\hat { i } +6\hat { j } +3\hat { k } \) and normal to the vector \(\hat { i } +3\hat { j } +5\hat { k } \)

  5. A plane passes through the point (−1, 1, 2) and the normal to the plane of magnitude \(3\sqrt { 3 } \) makes equal acute angles with the coordinate axes. Find the equation of the plane.

  6. Find the angle between the line \(\vec { r } =(2\hat { i } -\hat { j } +\hat { k } )+t(\hat { i } +2\hat { j } -2\hat { k } )\) and the plane \(\vec { r } =(6\hat { i } +3\hat { j } +2\hat { k } )=8\)

  7. Find the angle between the planes \(\vec { r } .(\hat { i } +\hat { j } -2\hat { k } )\) = 3 and 2x - 2y + z =2

  8. Find the length of the perpendicular from the point (1, -2, 3) to the plane x - y + z = 5.

  9. Find the acute angle between the planes \(\vec { r } .(2\hat { i } +2\hat { j } +2\hat { k } )\) and 4x-2y+2z = 15.

  10. Find the distance of a point (2, 5, −3) from the plane \(\vec { r } .(6\hat { i } -3\hat { j } +2\hat { k } )\) = 5

  11. Find the distance between the parallel planes x + 2y - 2z + 1 = 0 and 2x + 4y - 4z + 5 = 0

  12. If \(\overset { \rightarrow }{ a } =\overset { \wedge }{ i } +2\overset { \wedge }{ j } +3\overset { \wedge }{ k } \)\(\overset { \rightarrow }{ b } =-\overset { \wedge }{ i } +2\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \rightarrow }{ c } =3\overset { \wedge }{ i } +\overset { \wedge }{ j } \) find \(\frac { \lambda }{ c } \) such that \(\overset { \rightarrow }{ a } +\lambda \overset { \rightarrow }{ b } \) is perpendicular to \(\overset { \rightarrow }{ c } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    -a

  13. Find the Cartesian equation of a line passing through the points A(2, -1, 3) and B(4, 2, 1)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    -1

  14. Find the parametric form of vector equation of the plane passing through the point (1, -1, 2) having 2, 3, 3 as direction ratios of normal to the plane.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    2

  15. Let \(\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c } \) be unit vectors such \(\overset { \rightarrow }{ a } .\overset { \rightarrow }{ b } =\overset { \rightarrow }{ a } .\overset { \rightarrow }{ c } =0\) and the angle between \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \) is \(\frac { \pi }{ 6 } \)Prove that \(\overset { \rightarrow }{ a } =\pm 2\left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right) \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    Type I even degree reciprocal equation

*****************************************

Reviews & Comments about 12th Maths - Applications of Vector Algebra Two Marks Questions

Write your Comment