New ! Maths MCQ Practise Tests



Complex Numbers - Two Marks Study Materials

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30
    15 x 2 = 30
  1. Simplify \(\left( \frac { 1+i }{ 1-i } \right) ^{ 3 }-\left( \frac { 1-i }{ 1+i } \right) ^{ 3 }\) into rectangular form

  2. If z1= 3 - 2i and z= 6 + 4i, find \(\frac { { z }_{ 1 } }{ z_{ 2 } } \) in the rectangular form.

  3. Find the modulus of the following complex numbers
    \(\frac { 2i }{ 3+4i } \)

  4. Find the square roots of 4+3i

  5. Show that the following equations represent a circle, and find its centre and radius \(\left| z-2-i \right| =3\)

  6. Find the principal argument Arg z, when z = \(\frac { -2 }{ 1+i\sqrt { 3 } } \)

  7. Evaluate the following if z = 5−2i and w = −1+3i
    z − iw

  8. Write the following in the rectangular form:
     \(\overline { 3i } +\frac { 1 }{ 2-i } \).

  9. Find the modulus of the following complex numbers
    (1-i)10

  10. Show that the following equations represent a circle, and, find its centre and radius
    |3z-6+12i| = 8

  11. Simplify the following:
     \(\sum _{ n=1 }^{ 102 }{ { i }^{ n } } \)

  12. Represent the complex numbe \(1+i\sqrt { 3 } \) in polar form.

  13. If (cosθ + i sinθ)2 = x + iy, then show that x2+y2 =1

  14. Find the value of the complex number (i25)3.

  15. Find the values of the real number x and y if 3x + (2x - 3y) i = 6 + 3i9.

*****************************************

Reviews & Comments about 12th Maths - Complex Numbers - Two Marks Study Materials

Write your Comment