Loading [MathJax]/extensions/AssistiveMML.js
     New ! Maths MCQ Practise Tests



Differentials and Partial Derivatives One Mark Questions with Answer

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:30:00 Hrs
Total Marks : 15
    15 x 1 = 15
  1. A circular template has a radius of 10 cm. The measurement of radius has an approximate error of 0.02 cm. Then the percentage error in calculating area of this template is

    (a)

    0.2%

    (b)

    0.4%

    (c)

    0.04%

    (d)

    0.08%

  2. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?

    (a)

    \(\frac{1}{31}\)

    (b)

    \(\frac15\)

    (c)

    5

    (d)

    31

  3. If \(u(x, y)=e^{x^{2}+y^{2}}\),then \(\frac { \partial u }{ \partial x } \) is equal to

    (a)

    \(e^{x^{2}+y^{2}}\)

    (b)

    2xu

    (c)

    x2u

    (d)

    y2u

  4. If v (x, y) = log (ex + ey), then \(\frac { { \partial }v }{ \partial x } +\frac { \partial v }{ \partial y } \) is equal to

    (a)

    ex + ey

    (b)

    \(\frac{1}{e^x + e^y}\)

    (c)

    2

    (d)

    1

  5. If w (x, y) = xy, x > 0, then \(\frac { \partial w }{ \partial x } \) is equal to

    (a)

    xy log x

    (b)

    y log x

    (c)

    yxy-1

    (d)

    x log y

  6. If f (x, y) = exy then \(\frac { { \partial }^{ 2 }f }{ \partial x\partial y } \) is equal to

    (a)

    xyexy

    (b)

    (1 +xy)exy

    (c)

    (1 +y)exy

    (d)

    (1 + x)exy

  7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is

    (a)

    0.4 cu.cm

    (b)

    0.45 cu.cm

    (c)

    2 cu.cm

    (d)

    4.8 cu.cm

  8. The change in the surface area S = 6x2 of a cube when the edge length varies from xo to xo+ dx is

    (a)

    12 xo+dx

    (b)

    12xo dx

    (c)

    6xo dx

    (d)

    6xo+ dx

  9. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is

    (a)

    0.3xdx m3

    (b)

    0.03x m3

    (c)

    0.03x2 m3

    (d)

    0.03xm3

  10. If \(g(x, y)=3 x^{2}-5 y+2 y^{2}, x(t)=e^{t}\) and y(t) = cos t, then \(\frac{dg}{dt}\) is equal to

    (a)

    6e2t + 5 sin t - 4 cos t sin t

    (b)

    6e2t- 5 sin t + 4 cos t sin t

    (c)

    3e2t+ 5 sin t + 4 cos t sin t

    (d)

    3e2t - 5 sin t + 4 cos t sin t

  11. If \(f(x)=\frac{x}{x+1}\), then its differential is given by

    (a)

    \(\frac { -1 }{ ({ x+1) }^{ 2 } } dx\)

    (b)

    \(\frac { 1 }{ ({ x+1) }^{ 2 } } dx\)

    (c)

    \(\frac { 1 }{ x+1 } dx\)

    (d)

    \(\frac {- 1 }{ x+1 } dx\)

  12. If u(x, y) = x2+ 3xy + y - 2019, then \(\left.\frac{\partial u}{\partial x}\right|_{(4,-5)}\) is equal to

    (a)

    -4

    (b)

    -3

    (c)

    -7

    (d)

    13

  13. Linear approximation for g(x) = cos x at \(x=\frac{\pi}{2}\) is

    (a)

    \(x+\frac{\pi}{2}\)

    (b)

    \(-x +\frac{\pi}{2}\)

    (c)

    \(x - \frac{\pi}{2}\)

    (d)

    \(-x - \frac{\pi}{2}\)

  14. If w (x, y, z) = x2 (y - z) + y2 (z - x) + z2(x - y), then \(\frac { { \partial }w }{ \partial x } +\frac { \partial w }{ \partial y } +\frac { \partial w }{ \partial z } \) is

    (a)

    xy + yz + zx

    (b)

    x(y + z)

    (c)

    y(z + x)

    (d)

    0

  15. If f(x,y, z) = xy +yz +zx, then fx - fz is equal to

    (a)

    z - x

    (b)

    y - z

    (c)

    x - z

    (d)

    y - x

*****************************************

Reviews & Comments about 12th Maths - Differentials and Partial Derivatives One Mark Questions with Answer

Write your Comment