New ! Maths MCQ Practise Tests



Differentials and Partial Derivatives Two Marks Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 30
    15 x 2 = 30
  1. Find a linear approximation for the following functions at the indicated points.
    g(x) = \(g(x)=\sqrt { { x }^{ 2 }+9 } ,{ x }_{ 0 }=-4\)

  2. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
    Absolute error

  3. The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. Find the following in calculating the area of the circular plate:
    Relative error

  4. Find differential dy for each of the following function \(y=\frac { { \left( 1-2x \right) }^{ 3 } }{ 3-4x } \)

  5. Find differential dy for each of the following function
    y = (3 + sin(2x)) 2/3 

  6. Find differential dy for each of the following function
    y = ex2-5x+7 cos (x2 - 1)

  7. The relation between the number of words y a person learns in x hours is given by y = 52 \(\sqrt { x } \), 0, ≤ x ≤ 9. What is the approximate number of words learned when x changes from
    (i) 1 to 1.1 hour?
    (ii) 4 to 4.1 hour?

  8. The relation between the number of words y a person learns in x hours is given by y = 52 \(\sqrt { x } \), 0, ≤ x ≤ 9. What is the approximate number of words learned when x changes from

  9. Let g(x, y) = \(\frac { { x }^{ 2 }y }{ { x }^{ 4 }+{ y }^{ 2 } } \) for (x, y) ≠ (0, 0) and f(0, 0) = 0
    Show that \(\begin{matrix} lim \\ (x,y)\rightarrow (0,0) \end{matrix}\) g(x, y) = 0 along every line y = mx, m ∈ R

  10. Let g(x, y) = \(\frac { { x }^{ 2 }y }{ { x }^{ 4 }+{ y }^{ 2 } } \) for (x, y) ≠ (0, 0) and f(0, 0) = 0
    Show that \(\begin{matrix} lim \\ (x,y)\rightarrow (0,0) \end{matrix}\) g(x, y) = \(\frac { k }{ 1+{ k }^{ 2 } } \) along every parabola y = kx2, k ∈ R \ {0}.

  11. For each of the following functions find the gxy, gxx, gyy and gyx.
    g(x, y) = xey + 3x2y

  12. For each of the following functions find the gxy, gxx, gyy and gyx.
    g(x, y) = log (5x + 3y)

  13. For each of the following functions find the gxy, gxx, gyy and gyx
    g(x, y) = x2 + 3xy − 7y + cos(5x)

  14. If z(x, y) = x tan-1 (xy), x = t2, y = set, s, t ∈ R. Find \(\frac { \partial z }{ \partial s } \) and \(\frac { \partial z }{ \partial t } \) at s = t = 1

  15. Let U(x, y) = ex sin y, where x = st2, y = s2 t, s, t ∈ R. Find \(\frac { \partial U }{ \partial s } ,\frac { \partial U }{ \partial t } \) and evaluate them at s = t = 1.

*****************************************

Reviews & Comments about 12th Maths - Differentials and Partial Derivatives Two Marks Questions

Write your Comment