New ! Maths MCQ Practise Tests



Differentials and Partial Derivatives - Two Marks Study Materials

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30
    15 x 2 = 30
  1. Use the linear approximation to find approximate values of \({ (123) }^{ \frac { 2 }{ 3 } }\)

  2. Find a linear approximation for the following functions at the indicated points.
    \(h(x)=\frac{x}{x+1}, x_{0}=1\)

  3. Find ∆f and df for the function f for the indicated values of x, ∆x and compare

  4. Let g(x, y) = \(\frac { { x }^{ 2 }y }{ { x }^{ 4 }+{ y }^{ 2 } } \) for (x, y) ≠ (0, 0) and f(0, 0) = 0
    Show that \(\begin{matrix} lim \\ (x,y)\rightarrow (0,0) \end{matrix}\) g(x, y) = 0 along every line y = mx, m ∈ R

  5. If w(x, y) = x3 − 3xy + 2y2, x, y ∊ R, find the linear approximation for w at (1,−1)

  6. If v(x, y) = x2 - xy + \(\frac14\) y + 7, x, y ∈ R, find the differential dv.

  7. A circular metal plate expands under heating so that its radius increases by 2%. Find the approximate increase in the area of the plate if the radius of the plate before heating is 10cm.

  8. If f (x, y) = 2x3 - 11x2y + 3y3, prove that \(x\frac { \partial f }{ \partial x } +y\frac { \partial f }{ \partial y } =3f\)

  9. If w=log(x2+y2),x=cosθ,y=sinθ, find \(\frac { dw }{ d\theta } \)

  10. Find the linear approximation to \(g(z)=\sqrt [ 4 ]{ zat } z=2\)

*****************************************

Reviews & Comments about 12th Maths - Differentials and Partial Derivatives - Two Marks Study Materials

Write your Comment