New ! Maths MCQ Practise Tests



Discrete Mathematics Five Marks Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 50
    10 x 5 = 50
  1. Write the statements in words corresponding to ¬p, p ∧ q , p ∨ q and q ∨ ¬p, where p is ‘It is cold’ and q is ‘It is raining'.

  2. How many rows are needed for following statement formulae?
    \(p \vee \neg t \wedge(p \vee \neg s)\)

  3. How many rows are needed for following statement formulae?
    (( p ∧ q) ∨ (¬r ∨¬s)) ∧ (¬ t ∧ v))

  4. Construct the truth table for \((p\overset { \_ \_ }{ \vee } q)\wedge (p\overset { \_ \_ }{ \vee } \neg q)\)

  5. Verify 
    (i) closure property 
    (ii) commutative property 
    (iii) associative property 
    (iv) existence of identity and
    (v) existence of inverse for the operation +5 on Z5 using table corresponding to addition modulo 5.

  6. Using the equivalence property, show that p ↔️ q ≡ ( p ∧ q) v (ㄱp ∧ ㄱq)

  7. Define an operation \(*\)on Q as follows: a * b =\(\left( \frac { a+b }{ 2 } \right) \); a,b ∈Q. Examine the closure, commutative, and associative properties satisfied by \(*\)on Q.

  8. Let M = \(\left\{ \left( \begin{matrix} x & x \\ x & x \end{matrix} \right) :x\in R-\{ 0\} \right\} \) and let * be the matrix multiplication. Determine whether M is closed under ∗. If so, examine the commutative and associative properties satisfied by ∗ on M.

  9. Let M = \(\left\{ \left( \begin{matrix} x & x \\ x & x \end{matrix} \right) :x\in R-\{ 0\} \right\} \) and let ∗ be the matrix multiplication. Determine whether M is closed under ∗ . If so, examine the existence of identity, existence of inverse properties for the operation ∗ on M.

  10. Let A be Q\{1}. Define ∗ on A by x*y = x + y − xy . Is ∗ binary on A? If so, examine the existence of identity, existence of inverse properties for the operation ∗ on A.

*****************************************

Reviews & Comments about 12th Maths - Discrete Mathematics Five Marks Questions

Write your Comment