New ! Maths MCQ Practise Tests



Inverse Trigonometric Functions Three Marks Questions

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30
    10 x 3 = 30
  1. Prove that \({ cos }^{ -1 }\left( \frac { 4 }{ 5 } \right) +{ tan }^{ -1 }\left( \frac { 3 }{ 5 } \right) ={ tan }^{ -1 }\left( \frac { 27 }{ 11 } \right) \)

  2. Evaluate \(cos\left[ { sin }^{ -1 }\frac { 3 }{ 5 } +{ sin }^{ -1 }\frac { 5 }{ 13 } \right] \)

  3. Prove that \({ tan }^{ -1 }\left( \frac { m }{ n } \right) -{ tan }^{ -1 }\left( \frac { m-n }{ m+n } \right) =\frac { \pi }{ 4 } \)

  4. Solve: \({ tan }^{ -1 }\left( \cfrac { x-1 }{ x-2 } \right) +{ tan }^{ -1 }\left( \cfrac { x+1 }{ x+2 } \right) =\cfrac { \pi }{ 4 } \)

  5. Solve \({ tan }^{ -1 }\left( \frac { 2x }{ 1-{ x }^{ 2 } } \right) +{ cot }^{ -1 }\left( \frac { 1-{ x }^{ 2 } }{ 2x } \right) =\frac { \pi }{ 3 } ,x>0\)

  6. If \(sin\left( { sin }^{ -1 }\frac { 1 }{ 5 } +{ cos }^{ -1 }x \right) =1\) then find the value ofx.

  7. Prove that \({ tan }^{ -1 }\sqrt { x } =\frac { 1 }{ 2 } { cos }^{ -1 }={ \frac { 1 }{ 2 } { cos }^{ -1 }\left( \frac { 1-x }{ 1+x } \right) ,x\in \left| 0,1 \right| }\)

  8. Evaluate \(cos\left[ { cos }^{ -1 }\left( \frac { -\sqrt { 3 } }{ 2 } +\frac { \pi }{ 6 } \right) \right] \)

  9. Find the real solutions of the equation
    \({ tan }^{ -1 }\sqrt { x(x+1) } +{ sin }^{ -1 }\sqrt { { x }^{ 2 }+x+1 } =\frac { \pi }{ 2 } \)

  10. Solve: cos(tan-1x) = \(sin\left( { cot }^{ -1 }\frac { 3 }{ 4 } \right) \) 

*****************************************

Reviews & Comments about 12th Maths - Inverse Trigonometric Functions Three Marks Questions

Write your Comment