New ! Maths MCQ Practise Tests



Term 1 Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:00:00 Hrs
Total Marks : 60

    Part- A

    10 x 1 = 10
  1. If |adj(adj A)| = |A|9, then the order of the square matrix A is

    (a)

    3

    (b)

    4

    (c)

    2

    (d)

    5

  2. The number of solutions of the system of equations 2x+y = 4, x - 2y = 2, 3x + 5y = 6 is ____________

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    infinitely many

  3.  The value of \(\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)\) is

    (a)

    1+ i

    (b)

    i

    (c)

    1

    (d)

    0

  4. According to the rational root theorem, which number is not possible rational zero of 4x+ 2x- 10x- 5?

    (a)

    -1

    (b)

    \(\frac { 5 }{ 4 } \)

    (c)

    \(\frac { 4 }{ 5 } \)

    (d)

    5

  5. If sin-1 x+sin-1 y+sin-1 \(z = \frac{3\pi}{2}\), the value of x2017+y2018+z2019\(-\frac { 9 }{ { x }^{ 101 }+{ y }^{ 101 }+{ z }^{ 101 } } \)is

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    3

  6. \({ tan }^{ -1 }\left( \frac { 1 }{ 4 } \right) +{ tan }^{ -1 }\left( \frac { 2 }{ 11 } \right) \) = ____________

    (a)

    0

    (b)

    \(\frac { 1 }{ 2 } \)

    (c)

    -1

    (d)

    none

  7. The radius of the circle 3x+ by+ 4bx − 6by + b2 = 0 is

    (a)

    1

    (b)

    3

    (c)

    \( \sqrt {10}\)

    (d)

    \( \sqrt {11}\)

  8. If x + y = k is a normal to the parabola y2 = 12x, then the value of k is

    (a)

    3

    (b)

    -1

    (c)

    1

    (d)

    9

  9. If \(\vec { a } \times (\vec { b } \times \vec { c } )=(\vec { a } \times \vec { b } )\times \vec { c } \) where \(\vec { a } ,\vec { b } ,\vec { c } \) are any three vectors such that \(\vec{b} \cdot \vec{c} \neq 0 \text { and } \vec{a} \cdot \vec{b} \neq 0\), then \(\vec { a } \) and \(\vec { c } \) are

    (a)

    perpendicular

    (b)

    parallel

    (c)

    inclined at an angle \(\frac{\pi}{3}\)

    (d)

    inclined at an angle  \(\frac{\pi}{6}\)

  10. If the length of the perpendicular from the origin to the plane 2x + 3y + λz =1, λ > 0 is \(\frac{1}{5}\)then the value of λ is

    (a)

    \(2\sqrt { 3 } \)

    (b)

    \(3\sqrt { 2 } \)

    (c)

    0

    (d)

    1

  11. Part - B

    5 x 1 = 5
  12. (adj A)T

  13. (1)

    \(\frac { z-\bar { z } }{ 2 } \)

  14. Im(z)

  15. (2)

    adj (AT)

  16. \(\left| -\sqrt { 3 } +i \right| \)

  17. (3)

    2

  18. p(x) = xn.p\(\left( \frac { 1 }{ x } \right) \)

  19. (4)

    Reciprocal equation of type I

  20. \({ sin }^{ -1 }\left( sin\frac { 2\pi }{ 3 } \right) \)

  21. (5)

    \(\frac { \pi }{ 3 } \)

    Part - C

    6 x 2 = 12
  22. Prove that \(\left[ \begin{matrix} \cos { \theta } & -\sin { \theta } \\ \sin { \theta } & \cos { \theta } \end{matrix} \right] \) is orthogonal.

  23. Find the following \(\left| \frac { 2+i }{ -1+2i } \right| \) 

  24. Construct a cubic equation with roots 1, 2 and 3

  25. Solve tan-1\(\left( \frac { 1-x }{ 1+x } \right) =\frac { 1 }{ 2 } { tan }^{ -1 }\) x for x > 0

  26. Find the general equation of the circle whose diameter is the line segment joining the points (−4, −2)and (1, 1) is x2+y2+5x+3y+6=0

  27. Find the acute angle between the following lines
    2x = 3y = −z and 6x = − y = −4z.

  28. Part - D

    6 x 3 = 18
  29. If A = \(\left[ \begin{matrix} 3 & 2 \\ 7 & 5 \end{matrix} \right] \) and B = \(\left[ \begin{matrix} -1 & -3 \\ 5 & 2 \end{matrix} \right] \), verify that (AB)-1 = B-1A-1

  30. If z= 3, z= -7i, and z= 5 + 4i, show that z1(z+ z3) = zz+ zz3

  31. If z = 2−2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when \(\theta =\frac { \pi }{ 3 } \).

  32. Solve the equation x4-9x2+20 = 0.

  33. Solve sin-1 x > cos-1x

  34. Find the centre and radius of the circle 3x+ (a + 1)y+ 6x − 9y + a + 4 = 0.

  35. Part- E

    3 x 5 = 15
  36. If A = \(\left[ \begin{matrix} 4 & 3 \\ 2 & 5 \end{matrix} \right] \), find x and y such that A2 + xA + yI2 = O2. Hence, find A-1.

  37. Find all cube roots of \(\sqrt { 3 } +i\)

  38. ABCD is a quadrilateral with \(\overset { \rightarrow }{ AB } =\overset { \rightarrow }{ \alpha } \) and \(\overset { \rightarrow }{ AD } =\overset { \rightarrow }{ \beta } \) and \(\overset { \rightarrow }{ AC } =2\overset { \rightarrow }{ \alpha } +3\overset { \rightarrow }{ \beta } \). If the area of the quadrilateral is λ times the area of the parallelogram with \(\overset { \rightarrow }{ AB } \) and \(\overset { \rightarrow }{ AD } \) as adjacent sides, then prove that \(\lambda =\frac { 5 }{ 2 } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    plane

*****************************************

Reviews & Comments about 12th Maths - Term 1 Model Question Paper

Write your Comment