New ! Maths MCQ Practise Tests



Term II Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:30:00 Hrs
Total Marks : 90
    20 x 1 = 20
  1. If |adj(adj A)| = |A|9, then the order of the square matrix A is

    (a)

    3

    (b)

    4

    (c)

    2

    (d)

    5

  2.  The value of \(\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)\) is

    (a)

    1+ i

    (b)

    i

    (c)

    1

    (d)

    0

  3. The number of real numbers in [0, 2π] satisfying sin4x - 2sin2x + 1 is

    (a)

    2

    (b)

    4

    (c)

    1

    (d)

  4. The domain of the function defined by \(f(x)=\sin ^{-1} \sqrt{x-1}\) is

    (a)

    [1, 2]

    (b)

    [-1, 1]

    (c)

    [0, 1]

    (d)

    [-1, 0]

  5. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

    (a)

    \(\frac { 4 }{ 3 } \)

    (b)

    \(\frac { 4 }{ \sqrt { 3 } } \)

    (c)

    \(\frac { 2 }{ \sqrt { 3 } } \)

    (d)

    \(\frac { 3 }{ 2 } \)

  6. If x + y = k is a normal to the parabola y2 = 12x, then the value of k is

    (a)

    3

    (b)

    -1

    (c)

    1

    (d)

    9

  7. If \(\vec{a}\) and \(\vec{b}\) are parallel vectors, then \([\vec { a } ,\vec { c } ,\vec { b } ]\) is equal to

    (a)

    2

    (b)

    -1

    (c)

    1

    (d)

    0

  8. If the length of the perpendicular from the origin to the plane 2x + 3y + λz =1, λ > 0 is \(\frac{1}{5}\)then the value of λ is

    (a)

    \(2\sqrt { 3 } \)

    (b)

    \(3\sqrt { 2 } \)

    (c)

    0

    (d)

    1

  9. A stone is thrown up vertically. The height it reaches at time t seconds is given by x = 80t -16t2. The stone reaches the maximum height in time t seconds is given by

    (a)

    2

    (b)

    2.5

    (c)

    3

    (d)

    3.5

  10. If w (x, y) = xy, x > 0, then \(\frac { \partial w }{ \partial x } \) is equal to

    (a)

    xy log x

    (b)

    y log x

    (c)

    yxy-1

    (d)

    x log y

  11. If f(x,y, z) = xy +yz +zx, then fx - fz is equal to

    (a)

    z - x

    (b)

    y - z

    (c)

    x - z

    (d)

    y - x

  12. If \(f(x)=\int_{0}^{x} t \cos t d t, \text { then } \frac{d f}{d x}=\)

    (a)

    cos x - x sin x

    (b)

    sin x + x cos x

    (c)

    x cos x

    (d)

    x sin x

  13. If \(\frac{\Gamma(n+2)}{\Gamma(n)}=90\) then n is 

    (a)

    10

    (b)

    5

    (c)

    8

    (d)

    9

  14. The order and degree of the differential equation \(\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } +{ \left( \frac { dy }{ dx } \right) }^{ 1/3 }+{ x }^{ 1/4 }=0\) are respectively

    (a)

    2, 3

    (b)

    3, 3

    (c)

    2, 6

    (d)

    2, 4

  15. The number of arbitrary constants in the particular solution of a differential equation of third order is

    (a)

    3

    (b)

    2

    (c)

    1

    (d)

    0

  16. A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is

    (a)

    6

    (b)

    4

    (c)

    3

    (d)

    2

  17. If in 6 trials, X is a binomial variable which follows the relation 9P(X = 4) = P(X = 2), then the probability of success is

    (a)

    0.125

    (b)

    0.25

    (c)

    0.375

    (d)

    0.75

  18. Which one of the following is a binary operation on N?

    (a)

    Subtraction

    (b)

    Multiplication

    (c)

    Division

    (d)

    All the above

  19. In the last column of the truth table for ¬( p ∨ ¬q) the number of final outcomes of the truth value 'F' are

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  20. The proposition p ∧ (¬p ∨ q) is

    (a)

    a tautology

    (b)

    a contradiction

    (c)

    logically equivalent to p ∧ q

    (d)

    logically equivalent to p ∨ q

  21. 7 x 2 = 14
  22. If adj A = \(\left[ \begin{matrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] \), find A−1.

  23. Evaluate the following if z = 5−2i and w = −1+3i
    z + w

  24. Find the modulus and principal argument of the following complex numbers:
    \(-\sqrt { 3 } -i\)

  25. Find the principal value of
     \({ Sin }^{ -1 }\left( \frac { 1 }{ \sqrt { 2 } } \right) \)

  26. If y = 4x + c is a tangent to the circle x+ y= 9, find c 

  27. Prove that \((\vec { a } .(\vec { b } \times \vec { c } ))\vec { a } =(\vec { a } \times \vec { b } )\times (\vec { a } \times \vec { c } )\)

  28. A rectangular page is to contain 24 cm2 of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions of the page so that the area of the paper used is minimum.

  29. 7 x 3 = 21
  30. Verify the property (AT)-1 = (A-1)T with A = \(\left[ \begin{matrix} 2 & 9 \\ 1 & 7 \end{matrix} \right] \).

  31. If \(\frac { z+3 }{ z-5i } =\frac { 1+4i }{ 2 } \), find the complex number z in the rectangular form

  32. If z = 2−2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when \(\theta =\frac { 2\pi }{ 3 } \).

  33. Solve the equations
    x4+ 3x3- 3x - 1 = 0

  34. A circle of area 9π square units has two of its diameters along the lines x + y = 5 and x−y = 1. Find the equation of the circle.

  35. Using vector method, prove that if the diagonals of a parallelogram are equal, then it is a rectangle

  36. A person learnt 100 words for an English test. The number of words the person remembers in t days after learning is given by W(t) = 100 × (1− 0.1t)2, 0 ≤ t ≤ 10. What is the rate at which the person forgets the words 2 days after learning?

  37. 7 x 5 = 35
  38. If A = \(\frac { 1 }{ 7 } \left[ \begin{matrix} 6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3 \end{matrix} \right] \) is orthogonal, find a, b and c , and hence A−1.

  39. Solve the following system of linear equations by matrix inversion method:
    2x + 3y − z = 9, x + y + z = 9, 3x − y − z  = −1

  40. Solve the equation (x-2) (x-7) (x-3) (x+2)+19 = 0

  41. Find the equation of the circle passing through the points (1, 1 ), (2, -1 ) and (3, 2) .

  42. If \(\vec { a } =-2\hat { i } +3\hat { j } -2\hat { k } ,\vec { b } =3\hat { i } -\hat { j } +3\hat { k } ,\vec { c } =2\hat { i } -5\hat { j } +\hat { k } \) find \((\vec { a } \times \vec { b } )\times \vec { c } \) and \((\vec { a } \times \vec { b } )\times \vec { c } \). State whether they are equal.

  43. Evaluate: \(\\ \\ \int _{ -1 }^{ 1 }{ { e }^{ -\lambda x }(1-{ x }^{ 2 }) } dx\)

  44. A random variable X has the following probability mass function

    x  1   2  3  4  5  6
    f(x)  k  2k   6k   5k   6k   10k 

    Find
    (i) P(2 < X < 6)
    (ii) P(2 ≤ X < 5)
    (iii) P(X ≤4)
    (iv) P(3 < X )

*****************************************

Reviews & Comments about 12th Maths - Term II Model Question Paper

Write your Comment