New ! Maths MCQ Practise Tests



Theory of Equations Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 40
    5 x 1 = 5
  1. According to the rational root theorem, which number is not possible rational zero of 4x+ 2x- 10x- 5?

    (a)

    -1

    (b)

    \(\frac { 5 }{ 4 } \)

    (c)

    \(\frac { 4 }{ 5 } \)

    (d)

    5

  2. The polynomial x- kx+ 9x has three real zeros if and only if, k satisfies

    (a)

    |k| ≤ 6

    (b)

    k = 0

    (c)

    |k| > 6

    (d)

    |k| ≥ 6

  3. Let a > 0, b > 0, c >0. Theh n both the root of the equation ax2+bx+c = 0 are _________

    (a)

    real and negative

    (b)

    real and positive

    (c)

    rational numbers

    (d)

    none

  4. The equation \(\sqrt { x+1 } -\sqrt { x-1 } =\sqrt { 4x-1 } \) has ____________

    (a)

    no solution

    (b)

    one solution

    (c)

    two solution

    (d)

    more than one solution

  5. If the equation ax2+ bx+c = 0(a > 0) has two roots ∝ and β such that ∝ <- 2 and β > 2, then __________

    (a)

    b2-4ac = 0

    (b)

    b2 - 4ac <0

    (c)

    b2 - 4ac >0

    (d)

    b2 - 4ac ≥ 0

  6. 2 x 2 = 4
  7. 1) \(x+\frac { 1 }{ x } =2\)
    2) ax+ bx + c = 0
    3) \(\sqrt { x } +\frac { 1 }{ \sqrt { x } } =4\)
    4) \({ ax }^{ 2 }+\frac { b }{ x } +c=0\)

  8. If ax + by = 1, cx2 + dy2 = 1 have only one solution, then
    (1) \(\frac { { a }^{ 2 } }{ c } +\frac { { b }^{ 2 } }{ d } =1\)
    (2) \(x=\frac { a }{ c } \)
    (3) \(x=\frac { c }{ a } \)
    (4) \(x=\frac { b }{ d } \)

  9. 2 x 2 = 4
  10. Find a polynomial equation of minimum degree with rational coefficients, having 2-\(\sqrt{3}\) as a root.

  11. Show that the equation 2x2− 6x +7 = 0 cannot be satisfied by any real values of x.

  12. 4 x 3 = 12
  13. Find the sum of squares of roots of the equation 2x4- 8x3+ 6x2-3 = 0.

  14. Find the sum of the squares of the roots of ax4+ bx3+ cx2+ dx + e = 0. \(a \neq 0\)

  15. If α, β and γ are the roots of the cubic equation x3+ 2x2+ 3x + 4 = 0, form a cubic equation whose roots are \(\frac { 1 }{ \alpha } ,\frac { 1 }{ \beta } ,\frac { 1 }{ \gamma } \)

  16. Find the number of positive integral solutions of (pairs of positive integers satisfying) x2 - y2 = 353702.

  17. 3 x 5 = 15
  18. If 2+i and 3-\(\sqrt{2}\) are roots of the equation x6-13x5+ 62x4-126x3+ 65x2+127x-140 = 0, find all roots.

  19. Solve the equation (x-2) (x-7) (x-3) (x+2)+19 = 0

  20. If the sum of the roots of the quadratic equation ax2+ bx + c = 0 (abc ≠ 0)  is equal to the sum of the squares of their reciprocals, then \(\frac { a }{ c } ,\frac { b }{ a } ,\frac { c }{ b } \)  are H.P.

*****************************************

Reviews & Comments about 12th Maths - Theory of Equations Model Question Paper

Write your Comment