New ! Maths MCQ Practise Tests



Theory of Equations One Mark Questions with Answer

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 25
    25 x 1 = 25
  1. A zero of x3 + 64 is

    (a)

    0

    (b)

    4

    (c)

    4i

    (d)

    -4

  2. If f and g are polynomials of degrees m and n respectively, and if h(x) = (f g)(x), then the degree of h is

    (a)

    mn

    (b)

    m+n

    (c)

    mn

    (d)

    nm

  3. A polynomial equation in x of degree n always has

    (a)

    n distinct roots

    (b)

    n real roots

    (c)

    n complex roots

    (d)

    at most one root

  4. If α, β and γ are the zeros of x+ px+ qx + r, then \(\Sigma \frac { 1 }{ \alpha } \) is

    (a)

    \(-\frac { q }{ r } \)

    (b)

    \(-\frac { p }{ r } \)

    (c)

    \(\frac { q }{ r } \)

    (d)

    \(-\frac { q }{ p } \)

  5. According to the rational root theorem, which number is not possible rational zero of 4x+ 2x- 10x- 5?

    (a)

    -1

    (b)

    \(\frac { 5 }{ 4 } \)

    (c)

    \(\frac { 4 }{ 5 } \)

    (d)

    5

  6. The polynomial x- kx+ 9x has three real zeros if and only if, k satisfies

    (a)

    |k| ≤ 6

    (b)

    k = 0

    (c)

    |k| > 6

    (d)

    |k| ≥ 6

  7. The number of real numbers in [0, 2π] satisfying sin4x - 2sin2x + 1 is

    (a)

    2

    (b)

    4

    (c)

    1

    (d)

  8. If x3+12x2+10ax+1999 definitely has a positive zero, if and only if

    (a)

    a ≥ 0

    (b)

    a > 0

    (c)

    a < 0

    (d)

    a ≤ 0

  9. The polynomial x+ 2x + 3 has

    (a)

    one negative and two imaginary zeros

    (b)

    one positive and two imaginary zeros

    (c)

    three real zeros

    (d)

    no zeros

  10. The number of positive zeros of the polynomial \(\overset { n }{ \underset { j=0 }{ \Sigma } } { n }_{ C_{ r } }\)(-1)rxr is

    (a)

    0

    (b)

    n

    (c)

    < n

    (d)

    r

  11. If a, b, c ∈ Q and p +√q (p, q ∈ Q) is an irrational root of ax2+bx+c = 0 then the other root is ___________

    (a)

    -p+√q

    (b)

    p-iq

    (c)

    p-√q

    (d)

    -p-√q

  12. The quadratic equation whose roots are ∝ and β is ___________

    (a)

    (x - ∝)(x -β) = 0

    (b)

    (x - ∝)(x + β) = 0

    (c)

    ∝ + β = \(\frac{b}{a}\)

    (d)

    ∝ β = \(\frac{-c}{a}\)

  13. If f(x) = 0 has n roots, then f'(x) = 0 has __________ roots

    (a)

    n

    (b)

    n -1

    (c)

    n+1

    (d)

    (n-r)

  14. If x is real and \(\frac { { x }^{ 2 }-x+1 }{ { x }^{ 2 }+x+1 } \) then ________

    (a)

    \(\frac{1}{3}\) ≤ k ≤

    (b)

    k ≥ 5

    (c)

    k ≤ 0

    (d)

    none

  15. Let a > 0, b > 0, c >0. Theh n both the root of the equation ax2+bx+c = 0 are _________

    (a)

    real and negative

    (b)

    real and positive

    (c)

    rational numbers

    (d)

    none

  16. The equation \(\sqrt { x+1 } -\sqrt { x-1 } =\sqrt { 4x-1 } \) has ____________

    (a)

    no solution

    (b)

    one solution

    (c)

    two solution

    (d)

    more than one solution

  17. lf the root of the equation x3 + bx2+ cx - 1 = 0 form an lncreasing G.P, then ___________

    (a)

    one of the roots is 2

    (b)

    one of the roots is 1

    (c)

    one of the roots is -1

    (d)

    one of the roots is -2

  18. For real x, the equation \(\left| \frac { x }{ x-1 } \right| +|x|=\frac { { x }^{ 2 } }{ |x-1| } \) has ________

    (a)

    one solution

    (b)

    two solution

    (c)

    at least two solution

    (d)

    no solution

  19. If the equation ax2+ bx+c = 0(a > 0) has two roots ∝ and β such that ∝ <- 2 and β > 2, then __________

    (a)

    b2-4ac = 0

    (b)

    b2 - 4ac <0

    (c)

    b2 - 4ac >0

    (d)

    b2 - 4ac ≥ 0

  20. If \((2+\sqrt{3})^{x^{2}-2 x+1}+(2-\sqrt{3})^{x^{2}-2 x-1}=\frac{2}{2-\sqrt{3}}\) then x = _________

    (a)

    0, 2

    (b)

    0, 1

    (c)

    0, 3

    (d)

    0, √3

  21. If ∝, β, ૪ are the roots of the equation x3-3x+11 = 0, then ∝+β+૪ is __________.

    (a)

    0

    (b)

    3

    (c)

    -11

    (d)

    -3

  22. If ∝, β, ૪ are the roots of 9x3-7x+6 = 0, then ∝ β ૪ is __________

    (a)

    \(\frac{-7}{9}\)

    (b)

    \(\frac{7}{9}\)

    (c)

    0

    (d)

    \(\frac{-2}{3}\)

  23. If x2 - hx - 21 = 0 and x2 - 3hx + 35 = 0 (h > 0) have a common root, then h = ___________

    (a)

    0

    (b)

    1

    (c)

    4

    (d)

    3

  24. If ax2 + bx + c = 0, a, b, c \(\in\) R has no real zeros, and if a + b + c < 0, then __________

    (a)

    c>0

    (b)

    c<0

    (c)

    c=0

    (d)

    c≥0

  25. If p(x) = ax2 + bx + c and Q(x) = -ax2 + dx + c where ac ≠ 0 then p(x). Q(x) = 0 has at least _______ real roots.

    (a)

    no

    (b)

    1

    (c)

    2

    (d)

    infinite

*****************************************

Reviews & Comments about 12th Maths - Theory of Equations One Mark Questions with Answer

Write your Comment