New ! Business Maths and Statistics MCQ Practise Tests



12th Standard Business Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Two

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Business Maths

Time : 00:10:00 Hrs
Total Marks : 10

    Answer all the questions

    10 x 1 = 10
  1. If the number of variables in a non-homogeneous system AX = B is n, then the system possesses a unique solution only when _______.

    (a)

    \(\rho (A)=\rho (A,B)>n\)

    (b)

    \(\rho(A)=\rho(A, B)=n\)

    (c)

    \(\rho (A)=\rho (A,B) < n\)

    (d)

    none of these

  2. \(\int _{ 0 }^{ 1 }{ (2x+1) } dx\) is _______.

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  3. The given demand and supply function are given by D(x) = 20 − 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is ________.

    (a)

    40

    (b)

    \(\frac{41}{2}\)

    (c)

    \(\frac{40}{3}\)

    (d)

    \(\frac{41}{5}\)

  4. If the marginal cost function MC = 2 - 4x, then the cost function is _________

    (a)

    2x- 2X2+ k

    (b)

    2-4x2

    (c)

    \(\frac{2}{x}-4\)

    (d)

    2x-4x2

  5. The complementary function of (D2+ 4)y = e2x is ______.

    (a)

    (Ax +B)e2x

    (b)

    (Ax +B)e−2x

    (c)

    A cos 2x + B sin 2x

    (d)

    Ae−2x+ Be2x

  6. The variable separable form of \(\frac { dy }{ dx } =\frac { y(x-y) }{ x(x+y) } \) by taking y = vx and \(\frac { dy }{ dx } =v+x\frac { dv }{ dx } \) is ______.

    (a)

    \(\frac { 2{ v }^{ 2 } }{ 1+v } dv=\frac { dx }{ x } \)

    (b)

    \(\frac { 2{ v }^{ 2 } }{ 1+v } dv=-\frac { dx }{ x } \)

    (c)

    \(\frac { 2{ v }^{ 2 } }{ 1-v } dv=\frac { dx }{ x } \)

    (d)

    \(\frac { 1+v }{ 2{ v }^{ 2 } } dv=-\frac { dx }{ x } \)

  7. The integrating factor of x\(\frac { dy }{ dx } \)-y = ex is _____________

    (a)

    log x

    (b)

    e-yx

    (c)

    \(\frac { 1 }{ x } \)

    (d)

    \(\frac { -1 }{ x } \)

  8. For the given points (x0, y0) and (x1, y1) the Lagrange’s formula is _______.

    (a)

    \(y(x)=\frac{x-x_{1}}{x_{0}-x_{1}} y_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{1}\)

    (b)

    \(y(x)=\frac{x_{1}-x}{x_{0}-x_{1}} y_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{1}\)

    (c)

    \(y(x)=\frac{x-x_{1}}{x_{0}-x_{1}} y_{1}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{0}\)

    (d)

    \(y(x)=\frac{x_{1}-x}{x_{0}-x_{1}} y_{1}+\frac{x-x_{0}}{x_{1}-x_{0}} y_{0}\)

  9. E [c.f(x)] = ___________ where c is a constant

    (a)

    E (f(c)

    (b)

    c. Ef(x)

    (c)

    E\(\left( \frac { f}{c } \right) \)

    (d)

    E(-fc)

  10. The probability density function p(x) cannot exceed ________.

    (a)

    zero

    (b)

    one

    (c)

    mean

    (d)

    infinity

*****************************************

Reviews & Comments about 12th Standard Business Maths English Medium Free Online Test One Mark Questions with Answer Key 2020 - Part Two

Write your Comment