New ! Business Maths and Statistics MCQ Practise Tests



Integral Calculus – I 1 Mark Creative Question Paper With Answer Key

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Business Maths

Time : 00:20:00 Hrs
Total Marks : 15

    Multiple Choice Question

    15 x 1 = 15
  1. \(\int { \left( x-1 \right) } { e }^{ -x }\) dx = __________ +c

    (a)

    -xex

    (b)

    xex

    (c)

    -xe-x

    (d)

    xe-x

  2. If \(\int { \frac { { 2 }^{ \frac { 1 }{ x } } }{ { x }^{ 2 } } } dx=k{ 2 }^{ \frac { 1 }{ x } }\) +c, then k is ___________

    (a)

    \(-\frac { 1 }{ { log }_{ e }2 } \)

    (b)

    - loge2

    (c)

    -1

    (d)

    \(\frac { 1 }{ 2 } \)

  3. \(\int { { \left| x \right| }^{ 3 } } \)dx = ________________ +c

    (a)

    \(\frac { { -x }^{ 4 } }{ 4 } \)

    (b)

    \(\frac { { \left| x \right| }^{ 4 } }{ 4 } \)

    (c)

    \(\frac { { x }^{ 4 } }{ 4 } \)

    (d)

    none of these

  4. \(\int { \frac { 2 }{ { \left( { e }^{ x }+{ e }^{ -x } \right) }^{ 2 } } } \) dx = ____________ +c 

    (a)

    \(\frac { { -e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } \)

    (b)

    \(-\frac { { -e }^{ -x } }{ { e }^{ x }+{ e }^{ -x } } \)

    (c)

    \(\frac { 1 }{ { \left( { e }^{ x }+1 \right) }^{ 2 } } \)

    (d)

    \(\frac { 1 }{ { e }^{ x }-{ e }^{ -x } } \)

  5. \(\int { { e }^{ x } } \) (1-cot x +cot2 x) dx = _______________ +c

    (a)

    ex cot x

    (b)

    - ex cot x

    (c)

    ex cosec x

    (d)

    -ex cosec x

  6. \(\int { { e }^{ x } } \) f(x) + f' (x) dx = _____________ +c

    (a)

    ex f(x)

    (b)

    ex + f(x)

    (c)

    2ex f(x)

    (d)

    ex - f(x)

  7. If ∫ x sin x dx = - x cos x + α then α = __________ +c

    (a)

    sin x

    (b)

    cos x

    (c)

    C

    (d)

    none of these

  8. If \(\int { \frac { 1 }{ \left( x+2 \right) \left( { x }^{ 2 }+1 \right) } } \) dx = a log \(\left| 1+{ x }^{ 2 } \right| \) +b tan-1 x + \(\frac { 1 }{ 5 } log\left| x+2 \right| \) +c then ___________

    (a)

    \(a=-\frac { 1 }{ 10 } ,b=\frac { -2 }{ 5 } \)

    (b)

    \(a=\frac { 1 }{ 10 } ,b=\frac { -2 }{ 5 } \)

    (c)

    \(a=-\frac { 1 }{ 10 } ,b=\frac { 2 }{ 5 } \)

    (d)

    \(a=\frac { 1 }{ 10 } ,b=\frac { 2 }{ 5 } \)

  9. \(\int { { 3 }^{ x+2 } } \) dx = ______________ +c

    (a)

    \(\frac { { 3 }^{ x } }{ log3 } \)

    (b)

    \(\frac { 9\left( { 3 }^{ x } \right) }{ log3 } \)

    (c)

    \(\frac { 3.{ 3 }^{ x } }{ log3 } \)

    (d)

    \(\frac { { 3 }^{ x } }{ 9log3 } \)

  10. \(\int { \left( \frac { x }{ m } +\frac { m }{ x } \right) } \) dx = __________ +c

    (a)

    \(\frac { { x }^{ 2 } }{ 2m } +m\log { \left| x \right| } \)

    (b)

    \(\frac { x }{ { m }^{ 2 } } +m\log { \left| x \right| } \)

    (c)

    \(-\frac { 1 }{ { mx }^{ 2 } } +m\log { \left| x \right| } \)

    (d)

    \(\frac { 1 }{ m } -\frac { m }{ { x }^{ 2 } } \)

  11. The anti-derivative of f(x) = \(\sqrt { x } +\frac { 1 }{ \sqrt { x } } \) is ___________ +c

    (a)

    \(\frac { { 2 } }{ 3 } { x }^{ \frac { 3 }{ 2 } }+\frac { 2 }{ { x }^{ \frac { 1 }{ 2 } } } \)

    (b)

    \(\frac { { 3 } }{ 2 } { x }^{ \frac { 3 }{ 2 } }+2{ x }^{ \frac { 1 }{ 2 } }\)

    (c)

    \(\frac { { 2 } }{ 3 } { x }^{ \frac { 3 }{ 2 } }+2{ x }^{ \frac { 1 }{ 2 } }\)

    (d)

    none

  12. \(\int { { a }^{ 3x+2 } } \) dx = _____________ +c

    (a)

    a3x+2

    (b)

    \(\frac { { a }^{ 3x+2 } }{ 3 } \)

    (c)

    \(\frac { { a }^{ 3x+2 } }{ 3loga } \)

    (d)

    3 log a (a3x+2)

  13. ∫ e3 log x (x4 +1)-1 dx = ____________ +c

    (a)

    \(\log { \left| { x }^{ 4 }+1 \right| } \)

    (b)

    \(4\log { \left| { x }^{ 4 }+1 \right| } \)

    (c)

    -4 log |x4 +1|

    (d)

    \(\frac { 1 }{ 4 } \log { \left| { x }^{ 4 }+1 \right| } \)

  14. \(\int { \frac { dx }{ 9{ x }^{ 2 }-4 } } \)____________ +c

    (a)

    \(\log { \left| \frac { 3x-2 }{ 3x+2 } \right| } \)

    (b)

    \(12\log { \left| \frac { 3x-2 }{ 3x+2 } \right| } \)

    (c)

    \(\frac { 1 }{ 12 } \log { \left| \frac { 3x-2 }{ 3x+2 } \right| } \)

    (d)

    \(\frac { 1 }{ 6 } \log { \left| \frac { 3x-2 }{ 3x+2 } \right| } \)

  15. \(\int _{ 1 }^{ e }{ log } x\) dx = __________ +c

    (a)

    1

    (b)

    e-1

    (c)

    e+1

    (d)

    0

*****************************************

Reviews & Comments about 12th Standard Business Maths English Medium - Integral Calculus – I 1 Mark Creative Question Paper and Answer Key 2022 - 2023

Write your Comment