New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Reduced Syllabus Three Mark Important Questions - 2021(Public Exam )

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 75

    3 Marks

    25 x 3 = 75
  1. Given A = \(\left[ \begin{matrix} 1 & -1 \\ 2 & 0 \end{matrix} \right] \), B = \(\left[ \begin{matrix} 3 & -2 \\ 1 & 1 \end{matrix} \right] \) and C = \(\left[ \begin{matrix} 1 & 1 \\ 2 & 2 \end{matrix} \right] \), find a matrix X such that A X B = C.

  2. Find the rank of the following matrices by row reduction method:
    \(\left[ \begin{matrix} 1 \\ \begin{matrix} 2 \\ 5 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} -1 \\ -1 \end{matrix} \end{matrix}\begin{matrix} 1 \\ \begin{matrix} 3 \\ 7 \end{matrix} \end{matrix}\begin{matrix} 3 \\ \begin{matrix} 4 \\ 11 \end{matrix} \end{matrix} \right] \) 

  3. A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer’s rule to solve the problem).

  4. Find the adjoint of the following:
    \(\frac { 1 }{ 3 } \left[ \begin{matrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{matrix} \right] \)

  5. The complex numbers u, v, and w are related by \(\frac { 1 }{ u } =\frac { 1 }{ v } +\frac { 1 }{ w } \) If v = 3−4i and w = 4+3i, find u in rectangular form.

  6. If \(\left| z-\frac { 2 }{ z } \right| =2\) show that the greatest and least value of |z| are \(\sqrt { 3 } +1\) and \(\sqrt { 3 } -1\) respectively.

  7. Show that the equation \({ z }^{ 3 }+2\bar { z } =0\) has five solutions

  8. Show that \(\left( \frac { 19-7i }{ 9+i } \right) ^{ 12 }+\left( \frac { 20-5i }{ 7-6i } \right) ^{ 12 }\) is real

  9. Obtain the Cartesian form of the locus of z = x + iy in each of the following cases:
     Im[(1−i)z+1] = 0

  10. Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases:
    |z - 4|2- |z -1 |= 16

  11. Solve the equation 2x3+11x2−9x−18 = 0.

  12. Solve the cubic equation : 2x3−x2−18x + 9 = 0 if sum of two of its roots vanishes.

  13. Solve the cubic equations: 8x- 2x- 7x + 3 = 0

  14. For what value of x, the inequality \(\frac { \pi }{ 2 } <{ cos }^{ -1 }(3x-1)<\pi \) holds?

  15. Find tan(tan-1(2019))

  16. Prove that \({ tan }^{ -1 }x+{ tan }^{ -1 }\frac { 2x }{ 1-{ x }^{ 2 } } ={ tan }^{ -1 }\frac { 3x-{ x }^{ 3 } }{ 1-{ 3x }^{ 2 } } ,|x|<\frac { 1 }{ \sqrt { 3 } } \)

  17. Find the value of the expression in terms of x, with the help of a reference triangle.
    tan\(\left( { sin }^{ -1 }\left( x+\frac { 1 }{ 2 } \right) \right) \)

  18. Find the equations of the tangent and normal to the circle x+ y= 25 at P(-3, 4).

  19. A circle of area 9π square units has two of its diameters along the lines x + y = 5 and x−y = 1. Find the equation of the circle.

  20. Find the equation of the hyperbola with vertices (0, ±4) and foci(0, ±6).

  21. Find the equation of the hyperbola in each of the cases given below:
    passing through (5, −2) and length of the transverse axis along x axis and of length 8 units.

  22. Find the equation of the tangent to the parabola y2 = 16x perpendicular to 2x + 2y + 3 = 0.

  23. Find the equations of the tangent and normal to hyperbola 12x2−9y= 108 at \(\theta =\frac { \pi }{ 3 } \) (Hint: use parametric form)

  24. If D is the midpoint of the side BC of a triangle ABC, then show by vector method that \({ \left| \vec { AB } \right| }^{ 2 }+{ \left| \vec { AC } \right| }^{ 2 }=2({ \left| \vec { AD} \right| }^{ 2 }+{ \left| \vec { BD } \right| }^{ 2 })\)

  25. The vector equation in parametric form of a line is \(\vec { r } =(3\hat { i } -2\hat { j } +6\hat { k } )+t(2\hat { i } -\hat { j } +3\hat { k } )\). Find
    (i) the direction cosines of the straight line
    (ii) vector equation in non-parametric form of the line
    (iii) Cartesian equations of the line.

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Reduced Syllabus Three Mark Important Questions - 2021(Public Exam )

Write your Comment