New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part -II

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 25

    1 Marks

    25 x 1 = 25
  1. If x < 0, y < 0 such that xy = 1, then tan-1(x) + tan-1(y) =_____

    (a)

    \(\frac { \pi }{ 2 } \)

    (b)

    \(\frac { -\pi }{ 2 } \)

    (c)

    \(-\pi \)

    (d)

    none

  2. The distance between the foci of a hyperbola is 16 and e = \(\sqrt { 2 } \). Its equation is ____________

    (a)

    x2 - y2 = 32

    (b)

    y2 - x2 = 32

    (c)

    x2 - y2 = 16

    (d)

    y2 - x2 = 16

  3. If B, B1 are the ends of minor axis, F1, F2 are foci of the ellipse \(\frac { { x }^{ 2 } }{ 8 } +\frac { { y }^{ 2 } }{ 4 } \) = 1 then area of F1BF2B1 is __________

    (a)

    16

    (b)

    8

    (c)

    16\(\sqrt2\)

    (d)

    32\(\sqrt2\)

  4. Let \(\overset { \rightarrow }{ a } \)\(\overset { \rightarrow }{ b } \)and \(\overset { \rightarrow }{ c } \)be three non- coplanar vectors and let  \(\overset { \rightarrow }{ p } ,\overset { \rightarrow }{ q } ,\overset { \rightarrow }{ r } \) be the vectors defined by the relations \(\overset { \rightarrow }{ P } =\frac { \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } ,\overset { \rightarrow }{ q } =\frac { \overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } ,\overset { \rightarrow }{ r } =\frac { \overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } }{ \left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] } \) Then the value of \(\left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right) .\overset { \rightarrow }{ p } +\left( \overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } \right) .\overset { \rightarrow }{ q } +\left( \overset { \rightarrow }{ c } +\overset { \rightarrow }{ a } \right) .\overset { \rightarrow }{ r } \)= ____________

    (a)

    0

    (b)

    1

    (c)

    2

    (d)

    3

  5. The number of vectors of unit length perpendicular to the vectors \(\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) \) and \(\left( \overset { \wedge }{ j } +\overset { \wedge }{ k } \right) \)is __________

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    \(\infty\)

  6. The value of \({ \left| \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right| }^{ 2 }+{ \left| \overset { \rightarrow }{ a } -\overset { \rightarrow }{ b } \right| }^{ 2 }\) is _____________

    (a)

    \(2\left( { \left| \overset { \rightarrow }{ a } \right| }^{ 2 }+{ \left| \overset { \rightarrow }{ b } \right| }^{ 2 } \right) \)

    (b)

    \(\overset { \rightarrow }{ a } .\overset { \rightarrow }{ b } \)

    (c)

    \(2\left( { \left| \overset { \rightarrow }{ a } \right| }^{ 2 }-{ \left| \overset { \rightarrow }{ b } \right| }^{ 2 } \right) \)

    (d)

    \({ \left| \overset { \rightarrow }{ a } \right| }^{ 2 }{ \left| \overset { \rightarrow }{ b } \right| }^{ 2 }\)

  7. If the curves y = 2ex and y = ae-x intersect orthogonally, then a = _________

    (a)

    \(\frac { 1 }{ 2 } \)

    (b)

    -\(\frac { 1 }{ 2 } \)

    (c)

    2

    (d)

    2e2

  8. The function -3x+12 is ________ function on R.

    (a)

    decreasing

    (b)

    strictly decreasing

    (c)

    increasing

    (d)

    strictly increasing

  9. The approximate value of (627)\(\frac14\) is ................

    (a)

    5.002

    (b)

    5.003

    (c)

    5.005

    (d)

    5.004

  10. The area enclosed by the curve y = \(\frac { { x }^{ 2 } }{ 2 } \) , the x - axis and the lines x = 1, x = 3 is __________

    (a)

    4

    (b)

    8\(\frac23\)

    (c)

    13

    (d)

    4\(\frac{1}{3}\)

  11. The area bounded by the parabola y = x2 and the line y = 2x is __________

    (a)

    \(\frac43\)

    (b)

    \(\frac23\)

    (c)

    \(\frac{51}{3}\)

    (d)

    \(\frac{30}{3}\)

  12. The area of the ellipse \(\frac { { x }^{ 2 } }{ 9 } +\frac { { y }^{ 2 } }{ 4 } =1\) __________

    (a)

    (b)

    36π

    (c)

    2

    (d)

    36π2

  13. The solution of \(\frac{dy}{dx}+y\) cot x = sin 2x is ___________

    (a)

    y sin x = \(\frac{2}{3}\)sin3x+c

    (b)

    y sec x = \(\frac{x^2}{2}+c\)

    (c)

    y sin x = c+x

    (d)

    2y sin x = sin x - \(\frac{sin\ 3x}{3}+c\)

  14. The general solution of \(4\frac{d^2 y}{dx^2}\) + y = 0 is _________

    (a)

    \(y={ e }^{ \frac { x }{ 2 } }\left[ A\ cos\frac { x }{ 2 } +B\ sin\frac { x }{ 2 } \right] \)

    (b)

    \(y={ e }^{ \frac { x }{ 2 } }\left[ A\ cos\frac { x }{ 2 } -B\ sin\frac { x }{ 2 } \right] \)

    (c)

    \(y=Acos\frac { x }{ 2 } +Bsin\frac { x }{ 2 } \)

    (d)

    \(y={ Ae }^{ \frac { x }{ 2 } }+B{ e }^{ \frac { -x }{ 2 } }\)

  15. If F(x) is the probability distribution function then \(F\left( -\infty \right) \) is is _____________

    (a)

    1

    (b)

    2

    (c)

    \(\infty \)

    (d)

    0

  16. The random variable X has variance 4 and E(x2), then the mean of x is _____________

    (a)

    \(2\sqrt { 3 } \)

    (b)

    4

    (c)

    2

    (d)

    \(\sqrt { 2 } \)

  17. In a binomial distribution, if the mean is 8 and the variance is 6, then the number of trials is _____________

    (a)

    32

    (b)

    48

    (c)

    16

    (d)

    12

  18. In a binomial distribution,\(n=4,P(X=0)=\frac { 16 }{ 81 } \),then \(P(X=4)\) _____________

    (a)

    \(\frac { 1 }{ 16 } \)

    (b)

    \(\frac { 1 }{ 81 } \)

    (c)

    \(\frac { 1 }{ 27 } \)

    (d)

    \(\frac { 1 }{ 8 } \)

  19. A die is tossed 5 times. Getting an odd number is considered a success. Then the variance of distribution of number of success is _____________

    (a)

    \(\frac { 8 }{ 3 } \)

    (b)

    \(\frac { 3 }{ 8 } \)

    (c)

    \(\frac { 4 }{ 5 } \)

    (d)

    \(\frac { 5 }{ 4 } \)

  20. The sum of the mean and variance of a binomial distribution for 6 total is 2.16. Then the probability of success p =__________

    (a)

    0.4

    (b)

    0.6

    (c)

    0.8

    (d)

    0.2

  21. If F(x) is a distribution function of a random variable then the false statement is ____________

    (a)

    \(F(\infty )=1\)

    (b)

    \(F(-\infty )=-1\)

    (c)

    \({ F }^{ ' }\left( x \right) =f(x)\)

    (d)

    \(0<\mathrm{F}(x)<1\)

  22. The identity element in the group {R - {1},x} where a * b = a + b - ab is __________

    (a)

    0

    (b)

    1

    (c)

    \(\frac { 1 }{ a-1 } \)

    (d)

    \(\frac { a }{ a-1 } \)

  23. Define * on Z by a * b = a + b + 1 ∀ a,b \(\in \) Z. Then the identity element of z is ________

    (a)

    1

    (b)

    0

    (c)

    1

    (d)

    -1

  24. A binary operation * is defined on the set of positive rational numbers Q+ by a*b = \(\frac { ab }{ 4 } \). Then 3 * \(\left( \frac { 1 }{ 5 } *\frac { 1 }{ 2 } \right) \) is _____________

    (a)

    \(\frac { 3 }{ 160 } \)

    (b)

    \(\frac { 5 }{ 160 } \)

    (c)

    \(\frac { 3 }{ 10 } \)

    (d)

    \(\frac { 3 }{ 40 } \)

  25. The number of commutative binary operations which can be defined on a set containing n elements is _________

    (a)

    n\(\frac { n(n+1) }{ 2 } \)

    (b)

    \({ n }^{ { n }^{ 2 } }\)

    (c)

    \(n^{ \frac { n }{ 2 } }\)

    (d)

    n2

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part -II updated Book back Questions

Write your Comment