New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Complex Numbers Book Back 3 Mark Questions with Solution Part - I

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 30

    3 Marks

    10 x 3 = 30
  1. Given the complex number z = 2 + 3i, represent the complex numbers in Argand diagram z, iz , and z+iz

  2. Find the rectangular form of the complex numbers
    \(\left( cos\frac { \pi }{ 6 } +isin\frac { \pi }{ 6 } \right) \left( cos\frac { \pi }{ 12 } +isin\frac { \pi }{ 12 } \right) \)

  3. If \(cos\alpha +cos\beta +cos\gamma =sin\alpha +sin\beta +sin\gamma =0\) then show that 
    (i) \(cos3\alpha +cos3\beta +cos3\gamma =3cos(\alpha +\beta +\gamma )\)
    (ii) \(sin3\alpha +sin3\beta +sin3\gamma +sin3\gamma =3sin\left( \alpha +\beta +\gamma \right) \)

  4. Find the quotient \(\frac { 2\left( cos\frac { 9\pi }{ 4 } +isin\frac { 9\pi }{ 4 } \right) }{ 4\left( cos\left( \frac { -3\pi }{ 2 } + \right) isin\left( \frac { -3\pi }{ 2 } \right) \right) } \) in rectangular form

  5. Evaluate the following if z = 5−2i and w = −1+3i
    (z + w)2

  6. Find the least value of the positive integer n for which \(\left( \sqrt { 3 } +i \right) ^{ n }\) purely imaginary

  7. Obtain the Cartesian form of the locus of z = x + iy in each of the following cases:
    |z + i| = |z - 1|

  8. Find the rectangular form of the complex numbers
    \(\frac { cos\frac { \pi }{ 6 } -isin\frac { \pi }{ 6 } }{ 2\left( cos\frac { \pi }{ 3 } +isin\frac { \pi }{ 3 } \right) } \)

  9. If z = 2−2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when \(\theta =\frac { 3\pi }{ 2 } \).

  10. Simplify the following:
    i 1729

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Complex Numbers Book Back 3 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment