New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Creative 1 Mark Questions with Solution Part - I

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 25

    1 Marks

    25 x 1 = 25
  1. If the system of equations x = cy + bz, y = az + cx and z = bx + ay has a non - trivial solution then _____________

    (a)

    a2 + b2 + c2 = 1

    (b)

    abc ≠ 1

    (c)

    a + b + c =0

    (d)

    a2 + b2 + c2 + 2abc =1

  2. If AT is the transpose of a square matrix A, then ___________

    (a)

    |A| ≠ |AT|

    (b)

    |A| = |AT|

    (c)

    |A| + |AT| =0

    (d)

    |A| = |AT| only

  3. If A is a square matrix that IAI = 2, than for any positive integer n, |An| = _______

    (a)

    0

    (b)

    2n

    (c)

    2n

    (d)

    n2

  4. If A is a square matrix of order n, then |adj A| = ______________

    (a)

    |A|n-1

    (b)

    |A|n-2

    (c)

    |A|n

    (d)

    None

  5. Every homogeneous system ______

    (a)

    Is always consistent

    (b)

    Has only trivial solution

    (c)

    Has infinitely many solution

    (d)

    Need not be consistent

  6. If A is a non-singular matrix then IA-1| = ______

    (a)

    \(\left| \frac { 1 }{ { A }^{ 2 } } \right| \)

    (b)

    \(\frac { 1 }{ |A^{ 2 }| } \)

    (c)

    \(\left| \frac { 1 }{ A } \right| \)

    (d)

    \(\frac { 1 }{ |A| } \)

  7. If z = cos\(\frac { \pi }{ 4 } \) + i sin\(\frac { \pi }{ 6 } \), then ______

    (a)

    |z| = 1, arg(z) =\(\frac { \pi }{ 4 } \)

    (b)

    |z| = 1, arg(z) = \(\frac { \pi }{ 6 } \)

    (c)

    |z| = \(\frac { \sqrt { 3 } }{ 2 } \), arg(z) = \(\frac { 5\pi }{ 24 } \)

    (d)

    |z| = \(\frac { \sqrt { 3 } }{ 2 } \), arg (z) = tan-1\(\left( \frac { 1 }{ \sqrt { 2 } } \right) \)

  8. .If a = 3+i and z = 2-3i, then the points on the Argand diagram representing az, 3az and - az are _________

    (a)

    Vertices of a right angled triangle

    (b)

    Vertices of an equilateral triangle

    (c)

    Vertices of an isosceles

    (d)

    Collinear

  9. If x + iy = \(\frac { 3+5i }{ 7-6i } \), they y = ___________

    (a)

    \(\frac { 9 }{ 85 } \)

    (b)

    -\(\frac { 9 }{ 85 } \)

    (c)

    \(\frac { 53 }{ 85 } \)

    (d)

    none of these

  10. The value of (1+i)4 + (1-i)4 is __________

    (a)

    8

    (b)

    4

    (c)

    -8

    (d)

    -4

  11. If z = a + ib lies in quadrant then \(\frac { \bar { z } }{ z } \) also lies in the III quadrant if _________

    (a)

    a > b > 0

    (b)

    a < b < 0

    (c)

    b < a < 0

    (d)

    b > a > 0

  12. If zn = \(cos\frac { n\pi }{ 3 } +isin\frac { n\pi }{ 3 } \), then z1, z2 ..... z6 is _________

    (a)

    1

    (b)

    -1

    (c)

    i

    (d)

    -i

  13. If ω is the cube root of unity, then the value of (1-ω) (1-ω2) (1-ω4) (1-ω8) is _________

    (a)

    9

    (b)

    -9

    (c)

    16

    (d)

    32

  14. (1+i)3 = ______

    (a)

    3 + 3i

    (b)

    1 + 3i

    (c)

    3 - 3i

    (d)

    2i - 2

  15. For real x, the equation \(\left| \frac { x }{ x-1 } \right| +|x|=\frac { { x }^{ 2 } }{ |x-1| } \) has ________

    (a)

    one solution

    (b)

    two solution

    (c)

    at least two solution

    (d)

    no solution

  16. If \((2+\sqrt{3})^{x^{2}-2 x+1}+(2-\sqrt{3})^{x^{2}-2 x-1}=\frac{2}{2-\sqrt{3}}\) then x = _________

    (a)

    0, 2

    (b)

    0, 1

    (c)

    0, 3

    (d)

    0, √3

  17. If \({ tan }^{ -1 }\left\{ \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right\} =\alpha \) then x2 = _____________

    (a)

    \(sin2\alpha \)

    (b)

    \(sin\alpha \)

    (c)

    \(cos2\alpha \)

    (d)

    \(cos\alpha \)

  18. \({ tan }^{ -1 }\left( \frac { 1 }{ 4 } \right) +{ tan }^{ -1 }\left( \frac { 2 }{ 11 } \right) \) = ____________

    (a)

    0

    (b)

    \(\frac { 1 }{ 2 } \)

    (c)

    -1

    (d)

    none

  19. The value of \({ cos }^{ -1 }\left( \cos\cfrac { 5\pi }{ 3 } \right) +sin^{ -1 }\left( \sin\cfrac{5\pi }{ 3 } \right) \) is ______________ 

    (a)

    \(\cfrac { \pi }{ 2 } \)

    (b)

    \(\cfrac { 5\pi }{ 3 } \)

    (c)

    \(\cfrac { 10\pi }{ 3 } \)

    (d)

    0

  20. If \({ cos }^{ -1 }x>x>{ sin }^{ -1 }x\) then _________

    (a)

    \(\cfrac { 1 }{ \sqrt { 2 } }

    (b)

    \(0\le x<\frac { 1 }{ \sqrt { 2 } } \)

    (c)

    \(-1\le x<\frac { 1 }{ \sqrt { 2 } } \)

    (d)

    x>0

  21. If \(\theta ={ sin }^{ -1 }\left( sin(-{ 60 }^{ 0 }) \right) \) then one of the possible values of \(\theta\) is _________

    (a)

    \(\frac { \pi }{ 3 } \)

    (b)

    \(\frac { \pi }{ 2 } \)

    (c)

    \(\frac { 2\pi }{ 3 } \)

    (d)

    \(\frac { -2\pi }{ 3 } \)

  22. The eccentricity of the ellipse 9x2+ 5y2 - 30y = 0 is __________

    (a)

    \(\frac13\)

    (b)

    \(\frac23\)

    (c)

    \(\frac34\)

    (d)

    none of these

  23. The director circle of the ellipse \(\frac { { x }^{ 2 } }{ 9 } -\frac { { y }^{ 2 } }{ 5 } =1\) is ____________

    (a)

    x2 + y2 = 4

    (b)

    x2 +y2 = 9

    (c)

    x2 +y2 = 45

    (d)

    x2 +y2 = 14

  24. If e1, e2 are eccentricities of the ellipse \(\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } \) = 1 and the hyperbola \(\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } \) = 1 then 

    (a)

    \({ e }_{ 1 }^{ 2 }\) - \({ e }_{ 2 }^{ 2 }\) = 1

    (b)

    \({ e }_{ 1 }^{ 2 }\)  + \({ e }_{ 2 }^{ 2 }\) = 1

    (c)

    \({ e }_{ 1 }^{ 2 }\) - \({ e }_{ 2 }^{ 2 }\) = 2

    (d)

    \({ e }_{ 1 }^{ 2 }\) - \({ e }_{ 2 }^{ 2 }\) = 2

  25. The length of major and minor axes of 4x2 + 3y2 = 12 are ____________

    (a)

    4, 2\(\sqrt3\)

    (b)

    2, \(\sqrt3\)

    (c)

    2\(\sqrt3\), 4

    (d)

    \(\sqrt3\), 2

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Creative 1 Mark Questions with Solution Part - I updated Creative Questions

Write your Comment