New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Creative 2 Mark Questions with Solution Part - II

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 50

    2 Marks

    25 x 2 = 50
  1. If z1 and z2 are two complex numbers, such that |z1| = Iz2|, then is it necessary that z1 = z2?

  2. If (cosθ + i sinθ)2 = x + iy, then show that x2+y2 =1

  3. If z =\(\left( \frac { \sqrt { 3 } }{ 2 } +\frac { i }{ 2 } \right) ^{ 107 }+\left( \frac { \sqrt { 3 } }{ 2 } -\frac { i }{ 2 } \right) ^{ 107 }\), then show that Im (z) = 0

  4. If sin ∝, cos ∝ are the roots of the equation ax2 + bx + c-0 (c ≠ 0), then prove that (n + c)2 - b2 + c2

  5. If \({ cot }^{ -1 }\left( \frac { 1 }{ 7 } \right) =\theta \) find the value of cos \(\theta \)

  6. Prove that \({ tan }^{ -1 }\left( \frac { 1 }{ 7 } \right) +{ tan }^{ -1 }\left( \frac { 1 }{ 13 } \right) ={ tan }^{ -1 }\left( \frac { 2 }{ 9 } \right) \)

  7. Evaluate \(sin\left( \frac { 1 }{ 2 } { cos }^{ -1 }\frac { 4 }{ 5 } \right) \)

  8. If a parabolic reflector is 24 cm in diameter and 6 cm deep, find its locus.

  9. Find the locus of a point which divides so that the sum of its distances from (-4, 0) and (4, 0) is 10 units.

  10. A force of magnitude 6 units acting parallel to \(\overset { \wedge }{ 2i } -\overset { \wedge }{ 2j } +\overset { \wedge }{ k } \) displaces the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    b

  11. Find the parametric form of vector equation of a line passing through a point (2, -1, 3) and parallel to line \({ \overset { \rightarrow }{ r } }=\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) +t\left( 2\overset { \wedge }{ i } +\overset { \wedge }{ j } -2\overset { \wedge }{ k } \right) \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    p=-1

  12. If the planes \({ \overset { \rightarrow }{ r } }.\left( \overset { \wedge }{ i } +2\overset { \wedge }{ j } +3\overset { \wedge }{ k } \right) =7\) and \({ \overset { \rightarrow }{ r } }.\left( \lambda \overset { \wedge }{ i } +2\overset { \wedge }{ j } -7\overset { \wedge }{ k } \right) =26\) are perpendicular. Find the value of λ.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    ∆=4

  13. Find the maximum and minimum values of f(x) = |x+3| ∀ \(x\in R\).

  14. Find x if the rate of decrease of \(\frac { { x }^{ 2 } }{ 2 } -2x+5\) is twice the decrease of x.

  15. Using Rolle’s theorem find the value of c for f(x) = sin x in[0,2π]

  16. Obtain Maclaurin’s Series expansion for e2x.

  17. Determine the domain of concavity of the curve y=2-x2

  18. A circular metal plate expands under heating so that its radius increases by 2%. Find the approximate increase in the area of the plate if the radius of the plate before heating is 10cm.

  19. If f (x, y) = 2x3 - 11x2y + 3y3, prove that \(x\frac { \partial f }{ \partial x } +y\frac { \partial f }{ \partial y } =3f\)

  20. IF u(x, y) = x2 + 3xy + y2, x, y, ∈ R, find tha linear appraoximation for u at (2, 1) 

  21. If w=xyexy find \(\frac { { \partial }^{ 2 }u }{ \partial x\partial y } \)

  22. Find a linear approximation to f(x)=3xe2x-10 at x=5

  23. Prove that \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ log(tan \ x)dx } \)

  24. Evaluate \(\int _{ 1 }^{ 2 }{ \frac { 3x }{ { 9x }^{ 2 }-1 } dx } \)

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Creative 2 Mark Questions with Solution Part - II updated Creative Questions

Write your Comment