New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Creative 3 Mark Questions with Solution Part - II

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 75

    3 Marks

    25 x 3 = 75
  1. Verify that (A-1)T = (AT)-1 for A =\(\left[ \begin{matrix} -2 & -3 \\ 5 & -6 \end{matrix} \right] \).

  2. Find the principal value of -2i.

  3. Find the locus of z if Re\(\left( \frac { z+1 }{ z-i } \right) \) = 0 where z = x+iy.

  4. Find the locus of z if Re\(\\ \left( \frac { \bar { z } +1 }{ \bar { z } -i } \right) \) = 0.

  5. Find the number of real solutions of sin (ex) -5x + 5-x

  6. Solve: \({ (5+2\sqrt { 6 } ) }^{ { x }^{ 2 }-3 }+{ (5-2\sqrt { 6 } ) }^{ { x }^{ 2 }-3 }=10\)

  7. Evaluate \(cos\left[ { sin }^{ -1 }\frac { 3 }{ 5 } +{ sin }^{ -1 }\frac { 5 }{ 13 } \right] \)

  8. Solve: \({ tan }^{ -1 }\left( \cfrac { x-1 }{ x-2 } \right) +{ tan }^{ -1 }\left( \cfrac { x+1 }{ x+2 } \right) =\cfrac { \pi }{ 4 } \)

  9. If \(sin\left( { sin }^{ -1 }\frac { 1 }{ 5 } +{ cos }^{ -1 }x \right) =1\) then find the value ofx.

  10. Evaluate \(cos\left[ { cos }^{ -1 }\left( \frac { -\sqrt { 3 } }{ 2 } +\frac { \pi }{ 6 } \right) \right] \)

  11. Find the value of p so that 3x + 4y - p = 0 is a tangent to the circle x2 +y2 - 64 = 0.

  12. Find the equation of the ellipse whose latus rectum is 5 and e = \(\frac { 2 }{ 3 } \)

  13. For the hyperbola 3x2 - 6y2 = -18, find the length of transverse and conjugate axes and eccentricity.

  14. Find the Cartesian form of the equation of the plane \(\overset { \rightarrow }{ r } =\left( s-2t \right) \overset { \wedge }{ i } +\left( 3-t \right) \overset { \wedge }{ j } +\left( 2s+t \right) \overset { \wedge }{ k } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    s, t

  15. Find the angle between the line \(\frac { x-2 }{ 3 } =\frac { y-1 }{ -1 } =\frac { z-3 }{ 2 } \) and the plane 3x + 4y + z + 5 = 0

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    ∈ R

  16. Prove that \(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } \right] \)=\(\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    0

  17. If \(\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } =0\) then show that \(\overset { \rightarrow }{ a } \times \overset { \rightarrow }{ b } =\overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } =\overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    lies in the plane containing \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \)

  18. The side of a square is equal to the diameter of a circle. If the side and radius change at the same rate then find the ratio of the change of their areas.

  19. Find the equation of normal to the curve y4=ax2at(a,a)

  20. Evaluate the following limits, if necessary use L’Hopitals rule
    (i) \(\underset { x\rightarrow { 0 }^{ + } }{ lim } { x }^{ sinx }\)
    (ii) \(\underset { x\rightarrow 0 }{ lim } \cfrac { cotx }{ cot2x } \) 
    (iii) \(\underset { x\rightarrow \frac { { \pi }^{ - } }{ 2 } }{ lim } \left( tanx \right) ^{ cosx }\)

  21. Find the intervals of monotonicities and find the local extremum for the following functions
    i) f(x) = 20 - x - x2
    ii) f(x) = x(x-1) (x+1) on [0, 2]

  22. Find the local extrema for the following functions using second derivate test.
    (i) x3-x
    (ii) \({ x }^{ 3 }-3{ x }^{ 2 }+1,-\frac { 1 }{ 2 } \le x\le 4\)

  23. Find two positive numbers whose product is 100 and whose sum is minimum..

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Creative 3 Mark Questions with Solution Part - II updated Creative Questions

Write your Comment