New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Differentials and Partial Derivatives Book Back 5 Mark Questions with Solution Part - I

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 25

    5 Marks

    5 x 5 = 25
  1. If w(x, y) = xy + sin (xy), then prove that \(\frac { { \partial }^{ 2 }w }{ \partial y\partial x } =\frac { { \partial }^{ 2 }w }{ \partial x\partial y } \)

  2. If z(x, y) = x tan-1 (xy), x = t2, y = set, s, t ∈ R. Find \(\frac { \partial z }{ \partial s } \) and \(\frac { \partial z }{ \partial t } \) at s = t = 1

  3. Let U(x, y) = ex sin y, where x = st2, y = s2 t, s, t ∈ R. Find \(\frac { \partial U }{ \partial s } ,\frac { \partial U }{ \partial t } \) and evaluate them at s = t = 1.

  4. W(x, y, z) = xy + yz + zx, x = u - v, y = uv, z = u + v, u ∈ R. Find \(\frac { \partial W }{ \partial u } ,\frac { \partial W }{ \partial v } \), and evaluate them at \(\left( \frac { 1 }{ 2 } ,1 \right) \)

  5. Prove that f(x, y) = x3 - 2x2y + 3xy2 + y3 is homogeneous; what is the degree? Verify Euler's Theorem for f.

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Differentials and Partial Derivatives Book Back 5 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment