New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Ordinary Differential Equations Book Back 2 Mark Questions with Solution Part - II

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 20

    2 Marks

    10 x 2 = 20
  1. Find value of m so that the function y = emx is a solution of the given differential equation, y''− 5y' + 6y = 0

  2. Show that y = a cos bx is a solution of the differential equation \(\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } +{ b }^{ 2 }y=0\).

  3. Determine the order and degree (if exists) of the following differential equations: 
    \(3\left( \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } \right) ={ \left[ 4+{ \left( \frac { dy }{ dx } \right) }^{ 2 } \right] }^{ \frac { 3 }{ 2 } }\)

  4. Determine the order and degree (if exists) of the following differential equations: 
    dy + (xy − cos x)dx = 0

  5. Find the differential equation of the family of parabolas y2 = 4ax, where a is an arbitrary constant.

  6. Show that x+ y2 = r2, where r is a constant, is a solution of the differential equation \(\frac { dy }{ dx } \) = -\(\frac { x }{ y } \).

  7. Show that y = mx + \(\frac{7}{m}\), m ≠ 0 is a solution of the differential equation xy'+7\(\frac{1}{y'}\)-y = 0.

  8. Solve:\(\frac { dy }{ dx } \) = (3x+y+4)2.

  9. Solve the following differential equations or show that the solution of 
    \(\\ \\ \\ \frac { dy }{ dx } =\sqrt { \frac { 1-{ y }^{ 2 } }{ 1-{ x }^{ 2 } } } \)

  10. Solve the Linear differential equation:
    \(\frac { dy }{ dx } =\frac { { sin }^{ 2 }x }{ 1+{ x }^{ 3 } } -\frac { { 3x }^{ 2 } }{ 1+{ x }^{ 3 } } y\)

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Ordinary Differential Equations Book Back 2 Mark Questions with Solution Part - II updated Book back Questions

Write your Comment