New ! Maths MCQ Practise Tests



12th Standard English Medium Maths Subject Probability Distributions Book Back 1 Mark Questions with Solution Part - I

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 5

    1 Marks

    5 x 1 = 5
  1. A pair of dice numbered 1, 2, 3, 4, 5, 6 of a six-sided die and 1, 2, 3, 4 of a four-sided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  2. A random variable X has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is

    (a)

    6

    (b)

    4

    (c)

    3

    (d)

    2

  3. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

    (a)

    i + 2n, i = 0,1,2... n

    (b)

    2i- n, i = 0,1,2... n

    (c)

    n - i, i = 0,1,2... n

    (d)

    2i + 2n, i = 0, 1, 2...n

  4. If the function \(f(x)=\frac { 1 }{ 12 } \) for a < x < b, represents a probability density function of a continuous random variable X, then which of the following cannot be the value of a and b?

    (a)

    0 and 12

    (b)

    5 and 17

    (c)

    7 and 19

    (d)

    16 and 24

  5. If X is a binomial random variable with expected value 6 and variance 2.4, then P(X = 5) is 

    (a)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 6 }\left( \frac { 2 }{ 5 } \right) ^{ 4 }\) 

    (b)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 10 }\)

    (c)

    \(\left( \frac { 10 }{ 5 } \right) { \left( \frac { 3 }{ 5 } \right) }^{ 4 }\left( \frac { 2 }{ 5 } \right) ^{ 6 }\)

    (d)

    \(\left( \frac { 10 }{ 5 } \right) \left( \frac { 3 }{ 5 } \right) ^{ 5 }\left( \frac { 2 }{ 5 } \right) ^{ 5 }\)

*****************************************

Reviews & Comments about 12th Standard English Medium Maths Subject Probability Distributions Book Back 1 Mark Questions with Solution Part - I updated Book back Questions

Write your Comment