New ! Maths MCQ Practise Tests



All Chapter 5 Marks

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 03:00:00 Hrs
Total Marks : 240
    Answer All The Following Question:
    48 x 5 = 240
  1. Determine the values of λ for which the following system of equations (3λ − 8)x + 3y + 3z = 0, 3x + (3λ − 8)y + 3z = 0, 3x + 3y + (3λ − 8)z = 0. has a non-trivial solution.

  2. Solve the following system of linear equations by matrix inversion method:
    2x + 3y − z = 9, x + y + z = 9, 3x − y − z  = −1

  3. Show that the equations -2x + y + z = a, x - 2y + z = b, x + y -2z = c are consistent only if a + b + c = 0.

  4. Using Gaussian Jordan method, find the values of λ and μ so that the system of equations 2x - 3y + 5z = 12, 3x + y + λz =μ, x - 7y + 8z = 17 has
    (i) unique solution
    (ii) infinite solutions and
    (iii) no solution.

  5. Let z1, z2 and z3 be complex numbers such that \(\left| { z }_{ 1 } \right\| =\left| { z }_{ 2 } \right| =\left| { z }_{ 3 } \right| =r>0\) and z1+ z2+ z3 \(\neq \) 0 prove that \(\left| \frac { { z }_{ 1 }{ z }_{ 2 }+{ z }_{ 2 }{ z }_{ 3 }+{ z }_{ 3 }{ z }_{ 1 } }{ { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 } } \right| \) = r

  6. Find all cube roots of \(\sqrt { 3 } +i\)

  7. Verify that 2 arg(-1) ≠ arg(-1)2

  8. Verify that arg(1+i) + arg(1-i) = arg[(1+i) (1-i)]

  9. Solve the equation (2x-3) (6x-1) (3x-2) (x-2)-5 = 0

  10. Find all zeros of the polynomial x6- 3x5- 5x+ 22x3- 39x2- 39x + 135, if it is known that 1+2i and \(\sqrt{3}\) are two of its zeros.

  11. If a, b, c, d and p are distinct non-zero real numbers such that (a2+b2+c2) p2-2 (ab+bc+cd) p+(b2+c2+d2)≤ 0 then prove that a, b, c, d are in G.P and ad = bc

  12. Solve: (2x2 - 3x + 1) (2x2 + 5x + 1) = 9x2.

  13. If a1, a2, a3, ... an is an arithmetic progression with common difference d, prove that tan\( \left[ tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 1 }{ a }_{ 2 } } \right) +tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ 2 }{ a }_{ 3 } } \right) +....tan^{ -1 }\left( \frac { d }{ 1+{ a }_{ n }{ a }_{ n-1 } } \right) \right] =\frac { { a }_{ n }-{ a }_{ 1 } }{ 1+{ a }_{ 1 }{ a }_{ n } } \)

  14. Solve \(cos\left( sin^{ -1 }\left( \frac { x }{ \sqrt { 1+{ x }^{ 2 } } } \right) \right) =sin\left\{ cot^{ -1 }\left( \frac { 3 }{ 4 } \right) \right\} \)

  15. Write the function \(f(x)=\tan ^{-1} \sqrt{\frac{a-x}{a+x}}-a<x<a \) in the simplest form

  16. Prove that \({ tan }^{ -1 }\left( \frac { 1-x }{ 1+x } \right) -{ tan }^{ -1 }\left( \frac { 1-y }{ 1+y } \right) ={ sin }^{ -1 }\left( \frac { y-x }{ \sqrt { 1+{ x }^{ 2 } } .\sqrt { 1+{ y }^{ 2 } } } \right)\)

  17. Show that the line x−y+4 = 0 is a tangent to the ellipse x2+3y= 12 . Also find the coordinates of the point of contact.

  18. Points A and B are 10 km apart and it is determined from the sound of an explosion heard at those points at different times that the location of the explosion is 6 km closer to A than B. Show that the location of the explosion is restricted to a particular curve and find an equation of it.

  19. The girder of a railway bridge is a parabola with its vertex at the highest point 15 m above the ends. If the span is 120 m, find the height of the bridge at 24 m from the middle point.

  20. The foci of a hyperbola coincides with the foci of the ellipse \(\frac { { x }^{ 2 } }{ 25 } +\frac { y^{ 2 } }{ 9 } =1\). Find the equation of the hyperbola if its eccentricity is 2.

  21. By vector method, prove that cos(α + β) = cos α cos β -  sin α sin β

  22. Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines \(\vec { r } =(\hat { i } +\hat { 3j } -\hat { k } )+t(2\hat { i } +3\hat { j } +2\hat { k } )\) and \(\frac { x-2 }{ 1 } =\frac { y-4 }{ 2 } =\frac { z+3 }{ 4 } \) and perpendicular to both straight lines.

  23. ABCD is a quadrilateral with \(\overset { \rightarrow }{ AB } =\overset { \rightarrow }{ \alpha } \) and \(\overset { \rightarrow }{ AD } =\overset { \rightarrow }{ \beta } \) and \(\overset { \rightarrow }{ AC } =2\overset { \rightarrow }{ \alpha } +3\overset { \rightarrow }{ \beta } \). If the area of the quadrilateral is λ times the area of the parallelogram with \(\overset { \rightarrow }{ AB } \) and \(\overset { \rightarrow }{ AD } \) as adjacent sides, then prove that \(\lambda =\frac { 5 }{ 2 } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    plane

  24. If \(\left| \overset { \rightarrow }{ A } \right| =\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \wedge }{ i } =\overset { \wedge }{ j } -\overset { \wedge }{ k } \) are two given vector, then find a vector B satisfying the equations \(\overset { \rightarrow }{ A } \times \overset { \rightarrow }{ B } \)\(\overset { \rightarrow }{ C } \) and \(\overset { \rightarrow }{ A } \).\(\overset { \rightarrow }{ B } \) = 3

  25. A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall.
    (i) How fast is the top of the ladder moving down the wall?
    (ii) At what rate, the area of the triangle formed by the ladder, wall and the floor is changing?

  26. Find the local extrema for the following function using second derivative test:
    f(x) = x2 e-2x

  27. Sand is pouring from a pipe at the rate of 12 cm3/sec. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing, when the height is 4 cm?

  28. Find the intervals of concavity and points of inflexion for f(x)=x3-15x2+75x-50.

  29. Let U(x, y) = ex sin y, where x = st2, y = s2 t, s, t ∈ R. Find \(\frac { \partial U }{ \partial s } ,\frac { \partial U }{ \partial t } \) and evaluate them at s = t = 1.

  30. Prove that f(x, y) = x3 - 2x2y + 3xy2 + y3 is homogeneous; what is the degree? Verify Euler's Theorem for f.

  31. If V = log r and r2 = x2 +y2 + z2, then prove that \(\frac { { \partial }^{ 2 }V }{ \partial { x }^{ 2 } } +\frac { { \partial }^{ 2 }V }{ \partial { y }^{ 2 } } +\frac { { \partial }^{ 2 } }{ \partial { z }^{ 2 } } =\frac { 1 }{ { r }^{ 2 } } \)

  32. Find \(\frac { \partial w }{ \partial u } ,\frac { \partial w }{ \partial v } \) if w=sin-1(x,y) where x=u+v,y=u-v

  33. Evaluate the following integrals using properties of integration:
    \(\int _{ 0 }^{ \pi }{ x\left[ { sin }^{ 2 }(sinx)+{ cos }^{ 2 }(cosx) \right] } dx\)

  34. Find the area of the region bounded between the curves y = sin x and y = cos x and the lines x = 0 and x = \(\pi\)

  35. Find the value of ‘c’ for which the area bounded by the curve y=8x2-x5,the lines x=1,x=c and x-axis \(\frac { 16 }{ 3 } \)

  36. The velocity v , of a parachute falling vertically satisfies the equation \(\\ \\ \\ \\ \\ \\ \\ v\frac { dv }{ dx } =g\left( 1-\frac { { v }^{ 2 } }{ { k }^{ 2 } } \right) \\ \\ \), where g and k are constants. If v and x are both initially zero, find v in terms of x.

  37. A pot of boiling water at 100C is removed from a stove at time t = 0 and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to 80C , and another 5 minutes later it has dropped to 65oC. Determine the temperature of the kitchen.

  38. Solve : \(\frac { dy }{ dx } =\left( { sin }^{ 2 }x{ cos }^{ 2 }x+{ xe }^{ x } \right) dx\)

  39. Solve : (x-siny)dy+tanydx=0,y(0)=0

  40. A retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer, indicates that the defective rate of the device is 5%. The inspector of the retailer randomly picks 10 items from a shipment. What is the probability that there will be
    (i) at least one defective item
    (ii) exactly two defective items.

  41. Suppose that f (x) given below represents a probability mass function

    x 1 2 3 4 5 6
    f(x) c2 2c2 3c2 4c2 c 2c

    Find
    (i) the value of c
    (ii) Mean and variance.

  42. Establish the equivalence property connecting the bi-conditional with conditional: p ↔️ q ≡ (p ➝ q) ∧ (q⟶ p)

  43. Let A be Q\{1}. Define ∗ on A by x*y = x + y − xy. Is ∗ binary on A? If so, examine the commutative and associative properties satisfied by ∗ on A.

*****************************************

Reviews & Comments about 12th Standard Mathematics English Medium All Chapter Five Marks Book Back and Creative Questions 2020

Write your Comment