New ! Maths MCQ Practise Tests



Public Exam Model Question Paper II 2019 - 2020

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 02:45:00 Hrs
Total Marks : 90

    Part I

    Answer all the questions.

    Choose the most suitable answer from the given four alternatives and write the option code with the corresponding answer.

    20 x 1 = 20
  1. If A = \(\left[ \begin{matrix} \frac { 3 }{ 5 } & \frac { 4 }{ 5 } \\ x & \frac { 3 }{ 5 } \end{matrix} \right] \) and AT = A−1, then the value of x is

    (a)

    \(\frac { -4 }{ 5 } \)

    (b)

    \(\frac { -3 }{ 5 } \)

    (c)

    \(\frac { 3 }{ 5 } \)

    (d)

    \(\frac { 4 }{ 5 } \)

  2. The system of linear equations x + y + z  = 6, x + 2y + 3z =14 and 2x + 5y + λz =μ (λ, μ \(\in \) R) is consistent with unique solution if _________

    (a)

    λ = 8

    (b)

    λ = 8, μ ≠ 36

    (c)

    λ ≠ 8

    (d)

    none

  3. \(\frac { (cos\theta +isin\theta )^{ 6 } }{ (cos\theta -isin\theta )^{ 5 } } \) = ________

    (a)

    cos 11θ - isin 11θ

    (b)

    cos 11θ + isin 11θ

    (c)

    cosθ + i sinθ

    (d)

    \(cos\frac { 6\theta }{ 5 } +isin\frac { 6\theta }{ 5 } \)

  4. If f and g are polynomials of degrees m and n respectively, and if h(x) = (f g)(x), then the degree of h is

    (a)

    mn

    (b)

    m+n

    (c)

    mn

    (d)

    nm

  5. If x2 - hx - 21 = 0 and x2 - 3hx + 35 = 0 (h > 0) have a common root, then h = ___________

    (a)

    0

    (b)

    1

    (c)

    4

    (d)

    3

  6. \(\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}+\sec ^{-1} \frac{5}{3}-\operatorname{cosec}^{-1} \frac{13}{12}\) is equal to

    (a)

    2\(\pi\)

    (b)

    \(\pi\)

    (c)

    0

    (d)

    tan-1\(\frac{12}{65}\)

  7. If \({ tan }^{ -1 }\left\{ \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right\} =\alpha \) then x2 = _____________

    (a)

    \(sin2\alpha \)

    (b)

    \(sin\alpha \)

    (c)

    \(cos2\alpha \)

    (d)

    \(cos\alpha \)

  8. The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis is x+ y− 5x − 6y + 9 + \(\lambda\)(4x + 3y − 19) = 0 where λ is equal to

    (a)

    \(0,-\frac { 40 }{ 9 } \)

    (b)

    0

    (c)

    \(\frac { 40 }{ 9 } \)

    (d)

    \(\frac { -40 }{ 9 } \)

  9. The volume of the parallelepiped with its edges represented by the vectors \(\hat { i } +\hat { j } ,\hat { i } +2\hat { j } ,\hat { i } +\hat { j } +\pi \hat { k } \) is

    (a)

    \(\frac { \pi }{ 2 } \)

    (b)

    \(\frac { \pi }{ 3} \)

    (c)

    \( { \pi }\)

    (d)

    \(\frac { \pi }{ 4 } \)

  10. The maximum product of two positive numbers, when their sum of the squares is 200, is

    (a)

    100

    (b)

    \(25\sqrt { 7 } \)

    (c)

    28

    (d)

    \(24\sqrt { 14 } \)

  11. The angle made by any tangent to the curve y = x5 + 8x + 1 with the X-axis is a __________

    (a)

    obtuse

    (b)

    right angle

    (c)

    acute angle

    (d)

    no angle

  12. If u(x, y) = x2+ 3xy + y - 2019, then \(\left.\frac{\partial u}{\partial x}\right|_{(4,-5)}\) is equal to

    (a)

    -4

    (b)

    -3

    (c)

    -7

    (d)

    13

  13. If f(x, y) = 2x2 - 3xy + 5y + 7 then f(0, 0) and f(1, 1) is _____________

    (a)

    7, 11

    (b)

    11, 7

    (c)

    0, 7

    (d)

    1, 0

  14. For any value of \(n \in \mathbb{Z}, \int_{0}^{\pi} e^{\cos ^{2} x} \cos ^{3}[(2 n+1) x] d x\) is

    (a)

    \(\frac{\pi}{2}\)

    (b)

    \(\pi\)

    (c)

    0

    (d)

    2

  15. The value of \(\int _{ 0 }^{ \frac { \pi }{ 3 } } { tan } x \ dx\) __________

    (a)

    -log 2

    (b)

    log 2

    (c)

    -log 3

    (d)

    log 3

  16. The degree of the differential equation \(y(x)=1+\frac { dy }{ dx } +\frac { 1 }{ 1.2 } { \left( \frac { dy }{ dx } \right) }^{ 2 }+\frac { 1 }{ 1.2.3 } { \left( \frac { dy }{ dx } \right) }^{ 3 }+....\) is

    (a)

    2

    (b)

    3

    (c)

    1

    (d)

    4

  17. Using y = vx, the differential equation \(\frac { dy }{ dx } =\frac { y }{ x+\sqrt { xy } } \) is reduced to ________.

    (a)

    x(1+\(\sqrt{v}\))dv = v\(\sqrt{v}\)dx

    (b)

    x(1-\(\sqrt{v}\))dv = v\(\sqrt{v}\)dx

    (c)

    x(1+\(\sqrt{v}\))dv = -v\(\sqrt{v}\)dx

    (d)

    v(1+\(\sqrt{v}\))dx - v\(\sqrt{v}\)dv = 0

  18. A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?

    (a)

    \(\frac { 57 }{ { 20 }^{ 3 } } \)

    (b)

    \(\frac { 57 }{ { 20 }^{ 2 } } \)

    (c)

    \(\frac { { 19 }^{ 3 } }{ { 20 }^{ 3 } } \)

    (d)

    \(\frac { 57 }{ 20 } \)

  19. The proposition p ∧ (¬p ∨ q) is

    (a)

    a tautology

    (b)

    a contradiction

    (c)

    logically equivalent to p ∧ q

    (d)

    logically equivalent to p ∨ q

  20. Define * on Z by a * b = a + b + 1 ∀ a,b \(\in \) Z. Then the identity element of z is ________

    (a)

    1

    (b)

    0

    (c)

    1

    (d)

    -1

  21. Part II

    Answer any 7 questions. Question no. 30 is compulsory.

    10 x 2 = 20
  22. Find the rank of the matrix A =\(\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 5 \\ -3 \end{matrix}\begin{matrix} -6 \\ 0 \end{matrix}\begin{matrix} 1 \\ 8 \end{matrix} \right] \).

  23. Find the number of positive and negative roots of the equation x7 - 6x6 + 7x5 + 5x2+2x+2

  24. Find the equation of the parabola with vertex at the origin, passing through (2, -3) and symmetric about x-axis

  25. The volume of the parallelepiped whose coterminus edges are \(7\hat { i } +\lambda \hat { j } -3\hat { k } ,\hat { i } +2\hat { j } -\hat { k } \)\(-3\hat { i } +7\hat { j } +5\hat { k } \) is 90 cubic units. Find the value of λ.

  26. A particle moves in a line so that x =\(\sqrt { t } \). Show that the acceleration is negative and proportional to the cube of the velocity.

  27. Evaluate \(\begin{gathered} \text { lim } \\ (x, y) \rightarrow(1,2) \end{gathered}\)g(x, y), if the limit exists, where g\((x,y)=\frac { { 3x }^{ 2 }-xy }{ { x }^{ 2 }+{ y }^{ 2 }+3 } \)

  28. Evaluate \(\int { \sum _{ r=0 }^{ \infty }{ \cfrac { { x }^{ r }{ 2 }^{ r } }{ r! } } dx } \)

  29. Determine the order and degree (if exists) of the following differential equations: 
    \(\frac { { d }^{ 2 }y }{ { dx }^{ 2 } } +3{ \left( \frac { dy }{ dx } \right) }^{ 2 }={ x }^{ 2 }log\left( \frac { { d }^{ 2 }y }{ { dx }^{ 2 } } \right) \)

  30. The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function \(f(x)=\begin{cases} \begin{matrix} { 3e }^{ -3x } & x>0 \end{matrix} \\ \begin{matrix} 0 & elsewhere \end{matrix} \end{cases}\) 
    Find the expected life of this electronic equipment.

  31. Part III

    Answer any 7 questions. Question no. 40 is compulsory.

    10 x 3 = 30
  32. For what value of t will the system tx +3y - z = 1, x + 2y + z = 2, -tx + y + 2z = -1 fail to have unique solution?

  33. If \(\frac { z+3 }{ z-5i } =\frac { 1+4i }{ 2 } \), find the complex number z in the rectangular form

  34. If α and β are the roots of the quadratic equation 2x2−7x+13 = 0 , construct a quadratic equation whose roots are α2 and β2.

  35. Solve: 2x+2x-1+2x-2 = 7x+7x-1+7x-2

  36. If \(sin\left( { sin }^{ -1 }\frac { 1 }{ 5 } +{ cos }^{ -1 }x \right) =1\) then find the value ofx.

  37. Find the equations of the tangent and normal to hyperbola 12x2−9y= 108 at \(\theta =\frac { \pi }{ 3 } \) (Hint: use parametric form)

  38. Prove that \(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } \right] \)=\(\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    0

  39. Find the local extremum of the function f (x) = x4 + 32x

  40. Evaluate \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { dx }{ 1+{ tan }^{ 3 }x } } \)

  41. Construct the truth table for (-p) v (q ∧ r)

  42. Part IV

    Answer all the questions.

    14 x 5 = 70
  43. The sum of three numbers is 20. If we multiply the third number by 2 and add the first number to the result we get 23. By adding second and third numbers to 3 times the first number we get 46. Find the numbers using Cramer's rule.

  44. Show that \(\left( \frac { i+\sqrt { 3 } }{ -i+\sqrt { 3 } } \right) ^{ 2\omega }+\left( \frac { i-\sqrt { 3 } }{ i+\sqrt { 3 } } \right) ^{ 2\omega }\) = -1

  45. Determine k and solve the equation 2x3-6x2+3x+k = 0 if one of its roots is twice the sum of the other two roots.

  46. Find the principal value of
    sec−1(−2).

  47. Prove that \({ tan }^{ -1 }\left( \frac { 1-x }{ 1+x } \right) -{ tan }^{ -1 }\left( \frac { 1-y }{ 1+y } \right) ={ sin }^{ -1 }\left( \frac { y-x }{ \sqrt { 1+{ x }^{ 2 } } .\sqrt { 1+{ y }^{ 2 } } } \right)\)

  48. The foci of a hyperbola coincides with the foci of the ellipse \(\frac { { x }^{ 2 } }{ 25 } +\frac { y^{ 2 } }{ 9 } =1\). Find the equation of the hyperbola if its eccentricity is 2.

  49. Find the vector and Cartesian equation of the plane passing through the point (1,1, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0

  50. Evaluate: \(\underset{x \rightarrow1}{lim} \ x^{\frac{1}{1-x}}\)

  51. Let f(x, y) = sin(xy2) + \(e^{{x^3}+5y}\) for all ∈ R2. Calculate \(\frac { \partial f }{ \partial x } ,\frac { \partial f }{ \partial y } ,\frac { { \partial }^{ 2 }f }{ { \partial y\partial x } } \)and \(\frac { { \partial }^{ 2 }f }{ { \partial x\partial y } } \)

  52. Show that the area under the curve y = sin x and y = sin 2x between x = 0 and x = \(\frac { \pi }{ 3 } \) and x axis are as 2:3

    1. If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights
      (i) exactly 10 will have a useful life of at least 600 hours
      (ii) at least 11 will have a useful life of at least 600 hours
      (iii) at least 2 will not have a useful life of at least 600 hours.

    2. Construct the truth table for (p ∧ q) v r.

    1. Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin.

    2. Sovle : (x+y+1)2dy=dx,y(-1)=0

*****************************************

Reviews & Comments about 12th Standard Mathematics Public Exam Model Question Paper II 2019 - 2020

Write your Comment