New ! Maths MCQ Practise Tests



Applications of Integration Model Question Paper

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:45:00 Hrs
Total Marks : 40
    5 x 1 = 5
  1. The value of \(\int _{ -4 }^{ 4 }{ \left[ { tan }^{ -1 }\left( \frac { { x }^{ 2 } }{ { x }^{ 4 }+1 } \right) +{ tan }^{ -1 }\left( \frac { { x }^{ 4 }+1 }{ { x }^{ 2 } } \right) \right] dx } \) is

    (a)

    \(\pi\)

    (b)

    \(2\pi\)

    (c)

    \(3\pi\)

    (d)

    \(4\pi\)

  2. The value of \(\int _{ 0 }^{ \frac { \pi }{ 6 } }{ { cos }^{ 3 }3x\ dx }\ is\)

    (a)

    \(\frac{2}{3}\)

    (b)

    \(\frac{2}{9}\)

    (c)

    \(\frac{1}{9}\)

    (d)

    \(\frac{1}{3}\)

  3. The value of  \(\int _{ 0 }^{ \pi }{ { sin }^{ 4 }xdx } \) is

    (a)

    \(\frac{3\pi}{10}\)

    (b)

    \(\frac{3\pi}{8}\)

    (c)

    \(\frac{3\pi}{4}\)

    (d)

    \(\frac{3\pi}{2}\)

  4. The value of \(\int _{ 0 }^{ a }{ { (\sqrt { { a }^{ 2 }-{ x }^{ 2 } } ) }^{ 3 } } dx\) is

    (a)

    \(\frac { { \pi a }^{3 } }{ 16 } \)

    (b)

    \(\frac { 3\pi { a }^{ 4 } }{ 16 } \)

    (c)

    \(\frac { 3\pi { a }^{2 } }{ 8} \)

    (d)

    \(\frac { 3\pi { a }^{ 4 } }{ 8} \)

  5. The value of \(\int _{ -\frac { \pi }{ 2 } }^{ \frac { \pi }{ 2 } }{ { sin }^{ 2 }x\ cos \ x \ dx } \) is

    (a)

    \(\frac{3}{2}\)

    (b)

    \(\frac{1}{2}\)

    (c)

    0

    (d)

    \(\frac{2}{3}\)

  6. 5 x 2 = 10
  7. Evaluate the following integrals as the limits of sums.
    \(\int _{ 0 }^{ 1 }{ (5x+4)dx } \)

  8. Evaluate the following definite integrals:
    \(\int _{ 3 }^{ 4 }{ \frac { dx }{ { x }^{ 2 }-4 } } \)

  9. Evaluate the following definite integrals:
    \(\int _{ 0 }^{ 1 }{ \frac { 1-{ x }^{ 2 } }{ { (1+{ x }^{ 2 }) }^{ 2 } } } dx\)

  10. Evaluate the following integrals using properties of integration:
    \(\int _{ -5 }^{ 5 }{ xcos } \left( \frac { { e }^{ x }-1 }{ { e }^{ x }+1 } \right) dx\)

  11. Evaluate the following integrals using properties of integration:
    \(\int _{ 0 }^{ 1 }{ \frac { log(1+x) }{ 1+{ x }^{ 2 } } } dx\)

  12. 5 x 3 = 15
  13. Evaluate \(\int _{ 1 }^{ 2 }{ \frac { x }{ (x+1)(x+2) } dx } \)

  14. Evaluate: \(\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { cos\theta }{ (1+sin\theta )(2+sin\theta ) } } d\theta \)

  15. Evaluate:  \(\int ^{\frac{\pi}{2}}_{\frac{\pi}{2}}\)x cos x dx.

  16. Evaluate: \(\int ^{log 2}_{-log 2} e ^{-|x|}\) dx.

  17. Evaluate: \(\int_{0}^{a} \frac{f(x)}{f(x)+f(a-x)} d x\) 

  18. 2 x 5 = 10
  19. Evaluate: \(\\ \\ \int _{ -1 }^{ 1 }{ { e }^{ -\lambda x }(1-{ x }^{ 2 }) } dx\)

  20. Evaluate \(\int ^\frac {\pi}{2}_{0} \)( sin2 x + cos4 x ) dx

*****************************************

Reviews & Comments about 12th Standard Maths - Applications of Integration Model Question Paper

Write your Comment