New ! Maths MCQ Practise Tests



Applications of Vector Algebra Model Question Paper 1

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 50
    5 x 1 = 5
  1. If a vector \(\vec { \alpha } \) lies in the plane of \(\vec { \beta } \) and \(\vec { \gamma } \), then

    (a)

    \([\vec { \alpha } ,\vec { \beta } ,\vec { \gamma } ]\) = 1

    (b)

    \([\vec { \alpha } ,\vec { \beta } ,\vec { \gamma } ]\) = -1

    (c)

    \([\vec { \alpha } ,\vec { \beta } ,\vec { \gamma } ]\) = 0

    (d)

    \([\vec { \alpha } ,\vec { \beta } ,\vec { \gamma } ]\) = 2

  2. If \(\vec { a } ,\vec { b } ,\vec { c } \) are non-coplanar, non-zero vectors such that \([\vec { a } ,\vec { b } ,\vec { c } ]\) = 3, then \({ \{ [\vec { a } \times \vec { b } ,\vec { b } \times \vec { c } ,\vec { c } \times \vec { a } }]\} ^{ 2 }\) is equal to

    (a)

    81

    (b)

    9

    (c)

    27

    (d)

    18

  3. The coordinates of the point where the line \(\vec { r } =(6\hat { i } -\hat { j } -3\hat { k } )+t(-\hat { i } +4\hat { j } )\) meets the plane \(\vec { r } .(\hat { i } +\hat { j } -\hat { k } )\) = 3 are

    (a)

    (2, 1, 0)

    (b)

    (7, -1, -7)

    (c)

    (1, 2, -6)

    (d)

    (5, -1, 1)

  4. The number of vectors of unit length perpendicular to the vectors \(\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) \) and \(\left( \overset { \wedge }{ j } +\overset { \wedge }{ k } \right) \)is __________

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    \(\infty\)

  5. If \(\overset { \rightarrow }{ d } =\overset { \rightarrow }{ a } \times \left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right) +\overset { \rightarrow }{ b } \times \left( \overset { \rightarrow }{ c } \times \overset { \rightarrow }{ a } \right) +\overset { \rightarrow }{ c } \times \left( \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } \right) \), then __________

    (a)

    \(\left| \overset { \rightarrow }{ d } \right| \)

    (b)

    \(\overset { \rightarrow }{ d } =\overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } \)

    (c)

    \(\overset { \rightarrow }{ d } =\overset { \rightarrow }{ 0 } \)

    (d)

    a, b, c are coplanar

  6. 5 x 2 = 10
  7. The volume of the parallelepiped whose coterminus edges are \(7\hat { i } +\lambda \hat { j } -3\hat { k } ,\hat { i } +2\hat { j } -\hat { k } \)\(-3\hat { i } +7\hat { j } +5\hat { k } \) is 90 cubic units. Find the value of λ.

  8. Show that the straight line passing through the points A (6, 7, 5) and B(8, 10, 6) is perpendicular to the straight line passing through the points C(10, 2, -5) and D(8, 3, -4) 

  9. Find the parametric form of vector equation of a line passing through a point (2, -1, 3) and parallel to line \({ \overset { \rightarrow }{ r } }=\left( \overset { \wedge }{ i } +\overset { \wedge }{ j } \right) +t\left( 2\overset { \wedge }{ i } +\overset { \wedge }{ j } -2\overset { \wedge }{ k } \right) \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    p=-1

  10. Find the parametric form of vector equation of the plane passing through the point (1, -1, 2) having 2, 3, 3 as direction ratios of normal to the plane.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    2

  11. Let \(\overset { \rightarrow }{ a } ,\overset { \rightarrow }{ b } ,\overset { \rightarrow }{ c } \) be unit vectors such \(\overset { \rightarrow }{ a } .\overset { \rightarrow }{ b } =\overset { \rightarrow }{ a } .\overset { \rightarrow }{ c } =0\) and the angle between \(\overset { \rightarrow }{ b } \) and \(\overset { \rightarrow }{ c } \) is \(\frac { \pi }{ 6 } \)Prove that \(\overset { \rightarrow }{ a } =\pm 2\left( \overset { \rightarrow }{ b } \times \overset { \rightarrow }{ c } \right) \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    Type I even degree reciprocal equation

  12. 5 x 3 = 15
  13. If D is the midpoint of the side BC of a triangle ABC, then show by vector method that \({ \left| \vec { AB } \right| }^{ 2 }+{ \left| \vec { AC } \right| }^{ 2 }=2({ \left| \vec { AD} \right| }^{ 2 }+{ \left| \vec { BD } \right| }^{ 2 })\)

  14. Prove by vector method that an angle in a semi-circle is a right angle.

  15. If \(\vec { a } =\hat { i } -\hat { k } ,\vec { b } =x\hat { i } +\hat { j } +(1-x)\hat { k } ,\vec { c } =y\hat { i } +x\hat { j } +(1+x+y)\hat { k } \) show that \([\vec { a } ,\vec { b } ,\vec { c } ]\) depends on neither x nor y.

  16. Prove that \(\left[ \overset { \rightarrow }{ a } +\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ b } +\overset { \rightarrow }{ c } ,\overset { \rightarrow }{ c } \right] \)=\(\left[ \overset { \rightarrow }{ a } \overset { \rightarrow }{ b } \overset { \rightarrow }{ c } \right] \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    0

  17. Show that the lines \(\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-1 }{ 5 } \) and \(\frac { x+2 }{ 4 } =\frac { y-1 }{ 3 } =\frac { z+1 }{ -2 } \) do not intersect

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    a, b, c

  18. 4 x 5 = 20
  19. Prove by vector method that sin(α + β ) = sin α cos β + cos α sin β

  20. If \(\vec { a } =\vec { i } -\vec { j } ,\vec { b } =\hat { i } -\hat { j } -4\hat { k } ,\vec { c } =3\hat { j } -\hat { k } \) and \(\vec { d } =2\hat { i } +5\hat { j } +\hat { k } \)
    (i) \((\vec { a } \times \vec { b } )\times (\vec { c } \times \vec { d } )=[\vec { a } ,\vec { b } ,\vec { d } ]\vec { c } -[\vec { a } ,\vec { b } ,\vec { c } ]\vec { d } \)

  21. Show that the points A, B, C with position vector \(2\overset { \wedge }{ i } -\overset { \wedge }{ j } +\overset { \wedge }{ k } ,\overset { \wedge }{ i } -3\overset { \wedge }{ j } -5\overset { \wedge }{ k } \) and \(3\overset { \wedge }{ i } -4\overset { \wedge }{ j } +4\overset { \wedge }{ k } \) respectively are the vector of a right angled, triangle. Also, find the remaining angles of the triangle.

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    points on the plane

  22. Find the vector and Cartesian equation of the plane passing through the point (1,1, -1) and perpendicular to the planes x + 2y + 3z - 7 = 0 and 2x - 3y + 4z = 0

*****************************************

Reviews & Comments about 12th Standard Maths - Applications of Vector Algebra Model Question Paper 1

Write your Comment