New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Application of Matrices and Determinants Reduced Syllabus Important Questions 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 100

      Multiple Choice Questions

    10 x 1 = 10
  1. If |adj(adj A)| = |A|9, then the order of the square matrix A is

    (a)

    3

    (b)

    4

    (c)

    2

    (d)

    5

  2. If A = \(\left[ \begin{matrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{matrix} \right] \) and A-1 = \(\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right] \) then the value of a23 is

    (a)

    0

    (b)

    -2

    (c)

    -3

    (d)

    -1

  3. If xyb = em, xyd = en, Δ1 = \(\left| \begin{matrix} m & b \\ n & d \end{matrix} \right| \), Δ2 = \(\left| \begin{matrix} a & m \\ c & n \end{matrix} \right| \), Δ3 = \(\left| \begin{matrix} a & b \\ c & d \end{matrix} \right| \), then the values of x and y are respectively,

    (a)

    e2  / Δ1), e/ Δ1)

    (b)

    log (Δ/ Δ3), log (Δ/ Δ3)

    (c)

    log (Δ/ Δ1), log(Δ/ Δ1)

    (d)

    e(Δ/ Δ3),e(Δ/ Δ3)

  4. Let A = \(\left[ \begin{matrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{matrix} \right] \) and 4B = \(\left[ \begin{matrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{matrix} \right] \). If B is the inverse of A, then the value of x is

    (a)

    2

    (b)

    4

    (c)

    3

    (d)

    1

  5. If A is a square matrix of order n, then |adj A| = ______________

    (a)

    |A|n-1

    (b)

    |A|n-2

    (c)

    |A|n

    (d)

    None

  6. If the system of equations x + 2y - 3x = 2, (k + 3) z = 3, (2k + 1) y + z = 2 is inconsistent then k is ___________

    (a)

    -3, -\(\frac{1}{2}\)

    (b)

    -\(\frac{1}{2}\)

    (c)

    1

    (d)

    2

  7. In the system of equations with 3 unknowns, if Δ = 0, and one of Δx, Δy of Δz is non zero then the system is ______

    (a)

    Consistent

    (b)

    inconsistent

    (c)

    consistent with one parameter family of solutions

    (d)

    consistent with two parameter family of solutions

  8. In the system of liner equations with 3 unknowns If \(\rho\) (A) = \(\rho\) ([A|B]) =1, the system has ________

    (a)

    unique solution

    (b)

    inconsistent

    (c)

    consistent with 2 parameter -family of solution

    (d)

    consistent with one parameter family of solution.

  9. If A = [2 0 1] then the rank of AAT is ______

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    0

  10. If A is a non-singular matrix then IA-1| = ______

    (a)

    \(\left| \frac { 1 }{ { A }^{ 2 } } \right| \)

    (b)

    \(\frac { 1 }{ |A^{ 2 }| } \)

    (c)

    \(\left| \frac { 1 }{ A } \right| \)

    (d)

    \(\frac { 1 }{ |A| } \)

    1. 2 Marks

    10 x 2 = 20
  11. If A = \(\left[ \begin{matrix} a & b \\ c & d \end{matrix} \right] \) is non-singular, find A−1.

  12. If A is a non-singular matrix of odd order, prove that |adj A| is positive

  13. Find a matrix A if adj(A) = \(\left[ \begin{matrix} 7 & 7 & -7 \\ -1 & 11 & 7 \\ 11 & 5 & 7 \end{matrix} \right] \).

  14. If adj A = \(\left[ \begin{matrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] \), find A−1.

  15. Prove that \(\left[ \begin{matrix} \cos { \theta } & -\sin { \theta } \\ \sin { \theta } & \cos { \theta } \end{matrix} \right] \) is orthogonal.

  16. Find the rank of the following matrices by minor method:
    \(\left[ \begin{matrix} 1 \\ 3 \end{matrix}\begin{matrix} -2 \\ -6 \end{matrix}\begin{matrix} -1 \\ -3 \end{matrix}\begin{matrix} 0 \\ 1 \end{matrix} \right] \)

  17. Solve the following system of homogenous equations.
    2x + 3y − z = 0, x − y − 2z = 0, 3x + y + 3z = 0

  18. Find the rank of each of the following matrices:
    \(\left[ \begin{matrix} 4 & 3 \\ -3 & -1 \\ 6 & 7 \end{matrix}\begin{matrix} 1 & -2 \\ -2 & 4 \\ -1 & 2 \end{matrix} \right] \)

  19. If A is a square matrix such that A3 = I, then prove that A is non-singular.

  20. Solve 6x - 7y = 16, 9x - 5y = 35 using (Cramer's rule).

    1. 3 Marks

    10 x 3 = 30
  21. Find the inverse of the matrix \(\left[ \begin{matrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{matrix} \right] \).

  22. Decrypt the received encoded message \(\left[ \begin{matrix} 2 & -3 \end{matrix} \right] \left[ \begin{matrix} 20 & 4 \end{matrix} \right] \) with the encryption matrix \(\left[ \begin{matrix} -1 & -1 \\ 2 & 1 \end{matrix} \right] \) and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 - 26 to the letters A - Z respectively, and the number 0 to a blank space.

  23. Reduce the matrix \(\left[ \begin{matrix} 0 \\ -1 \\ 4 \end{matrix}\begin{matrix} 3 \\ 0 \\ 2 \end{matrix}\begin{matrix} 1 \\ 2 \\ 0 \end{matrix}\begin{matrix} 6 \\ 5 \\ 0 \end{matrix} \right] \) to row-echelon form.

  24. Find the inverse of the non-singular matrix A = \(\left[ \begin{matrix} 0 & 5 \\ -1 & 6 \end{matrix} \right] \), by Gauss-Jordan method.

  25. Find the inverse of each of the following by Gauss-Jordan method:
    \(\left[ \begin{matrix} 2 & -1 \\ 5 & -2 \end{matrix} \right] \) 

  26. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.

  27. Test for consistency of the following system of linear equations and if possible solve:
    x - y + z = -9, 2x - 2y + 2z = -18, 3x - 3y + 3z + 27 = 0.

  28. Solve the following system:
    x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.

  29. Find the inverse (if it exists) of the following:
    \(\left[ \begin{matrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{matrix} \right] \)

  30. If the rank of the matrix \(\left[ \begin{matrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{matrix} \right] \) is 2, then find ⋋.

    1. 5 Marks

    8 x 5 = 40
  31. If A = \(\left[ \begin{matrix} 5 & 3 \\ -1 & -2 \end{matrix} \right] \), show that A2 - 3A - 7I2 = O2. Hence find A−1.

  32. A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is Rs. 150. The cost of the two dosai, two idlies and four vadais is Rs. 200. The cost of five dosai, four idlies and two vadais is Rs. 250. The family has Rs. 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had ?

  33. Investigate for what values of λ and μ the system of linear equations x  +  2y  +  z  =  7 ,   x  +  y  +  λz   =  μ ,   x  +  3y  −  5z   =  5 has
    (i) no solution 
    (ii) a unique solution 
    (iii) an infinite number of solutions

  34. If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and p ≠ a, q ≠ b, r ≠ c, prove that \(\frac { p }{ p-a } +\frac { q }{ q-b } +\frac { r }{ r-c } =2\).

  35. Find the inverse of each of the following by Gauss-Jordan method:
    \(\left[ \begin{matrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{matrix} \right] \)

  36. Find the inverse of each of the following by Gauss-Jordan method:
    \(\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{matrix} \right] \)

  37. Solve the following system of linear equations by matrix inversion method:
    2x + 3y − z = 9, x + y + z = 9, 3x − y − z  = −1

  38. Using Gaussian Jordan method, find the values of λ and μ so that the system of equations 2x - 3y + 5z = 12, 3x + y + λz =μ, x - 7y + 8z = 17 has
    (i) unique solution
    (ii) infinite solutions and
    (iii) no solution.

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Application of Matrices and Determinants Reduced Syllabus Important Questions 2021

Write your Comment