New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Complex Numbers Reduced Syllabus Important Questions With Answer Key 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 100

      Multiple Choice Questions


    15 x 1 = 15
  1. If z is a non zero complex number, such that 2iz2 = \(\bar { z } \) then |z| is

    (a)

    \(\cfrac { 1 }{ 2 } \)

    (b)

    1

    (c)

    2

    (d)

    3

  2. If |z - 2 + i | ≤ 2, then the greatest value of |z| is

    (a)

    \(\sqrt { 3 } -2\)

    (b)

    \(\sqrt { 3 } +2\)

    (c)

    \(\sqrt { 5 } -2\)

    (d)

    \(\sqrt { 5 } +2\)

  3. If \(\alpha \) and \(\beta \) are the roots of x2+x+1 = 0, then \({ \alpha }^{ 2020 }+{ \beta }^{ 2020 }\) is

    (a)

    -2

    (b)

    -1

    (c)

    1

    (d)

    2

  4. The product of all four values of \(\left( cos\cfrac { \pi }{ 3 } +isin\cfrac { \pi }{ 3 } \right) ^{ \frac { 3 }{ 4 } }\) is

    (a)

    -2

    (b)

    -1

    (c)

    1

    (d)

    2

  5. The least positive integer n such that \(\left( \frac { 2i }{ 1+i } \right) ^{ n }\) is a positive integer is ____________

    (a)

    16

    (b)

    8

    (c)

    4

    (d)

    2

  6. If a = 3 + i and z = 2 - 3i, then the points on the Argand diagram representing az, 3az and - az are ___________

    (a)

    Vertices of a right angled triangle

    (b)

    Vertices of an equilateral triangle

    (c)

    Vertices of an isosceles

    (d)

    Collinear

  7. If x + iy = \(\frac { 3+5i }{ 7-6i } \), they y = ___________

    (a)

    \(\frac { 9 }{ 85 } \)

    (b)

    -\(\frac { 9 }{ 85 } \)

    (c)

    \(\frac { 53 }{ 85 } \)

    (d)

    none of these

  8. The value of (1+i)4 + (1-i)4 is __________

    (a)

    8

    (b)

    4

    (c)

    -8

    (d)

    -4

  9. The complex number z which satisfies the condition \(\left| \frac { 1+z }{ 1-z } \right| \)  = 1 lies on _________

    (a)

    circle x2+ y2 = 1

    (b)

    x-axis

    (c)

    y-axis

    (d)

    the lines x+y = 1

  10. If ω is the cube root of unity, then the value of (1-ω) (1-ω2) (1-ω4) (1-ω8) is _________

    (a)

    9

    (b)

    -9

    (c)

    16

    (d)

    32

  11. \(\frac { (cos\theta +isin\theta )^{ 6 } }{ (cos\theta -isin\theta )^{ 5 } } \) = ________

    (a)

    cos 11θ - isin 11θ

    (b)

    cos 11θ + isin 11θ

    (c)

    cosθ + i sinθ

    (d)

    \(cos\frac { 6\theta }{ 5 } +isin\frac { 6\theta }{ 5 } \)

  12. If a = cos α + i sin α, b = -cos β + i sin β then \(\left( ab-\frac { 1 }{ ab } \right) \) is _________

    (a)

    -2i sin(α - β)

    (b)

    2i sin(α - β)

    (c)

    2 cos(α - β)

    (d)

    -2 cos(α - β)

  13. If x = cos θ + i sin θ, then x\(\frac { 1 }{ { x }^{ n } } \) is ______

    (a)

    2 cos nθ

    (b)

    2 i sin nθ

    (c)

    2n cosθ

    (d)

    2n i sinθ

  14. If z1, z2, z3 are the vertices of a parallelogram, then the fourth vertex z4 opposite to z2 is _____

    (a)

    z1 + z2 - z2

    (b)

    z1 + z2 - z3

    (c)

    z1 + z2 - z3

    (d)

    z1 - z2 - z3

  15. If x\(cos\left( \frac { \pi }{ 2^{ r } } \right) +isin\left( \frac { \pi }{ 2^{ r } } \right) \) then x1, x2, x3 ... x is _________

    (a)

    -∞

    (b)

    -2

    (c)

    -1

    (d)

    0

    1. 2 Marks


    10 x 2 = 20
  16. Find z−1, if z = (2 + 3i) (1− i).

  17. Obtain the Cartesian equation for the locus of z = x + iy in each of the following cases:
    |z - 4| = 16

  18. Show that the following equations represent a circle, and, find its centre and radius
    \(\left| 2z+2-4i \right| =2\)

  19. Show that the following equations represent a circle, and, find its centre and radius
    |3z-6+12i| = 8

  20. Simplify the following:
     \(\sum _{ n=1 }^{ 102 }{ { i }^{ n } } \)

  21. Find the following \(\left| \overline { (1+i) } (2+3i)(4i-3) \right| \)

  22. Find the modulus and principal argument of the following complex numbers.
    \(-\sqrt { 3 } +i\)

  23. If z1 and z2 are two complex numbers, such that |z1| = Iz2|, then is it necessary that z1 = z2?

  24. If 1, ω, ω2 are the cube roots of unity show that (1+ω2)3 - (1+ω)3 = 0

  25. Find the values of the real number x and y if 3x + (2x - 3y) i = 6 + 3i9.

    1. 3 Marks


    10 x 3 = 30
  26. The complex numbers u, v, and w are related by \(\frac { 1 }{ u } =\frac { 1 }{ v } +\frac { 1 }{ w } \) If v = 3−4i and w = 4+3i, find u in rectangular form.

  27. If z= 3 + 4i, z= 5 -12i, and z3 = 6 + 8i, find |z1|, |z2|, |z3|, |z1+z2|, |z2-z3| and |z1+z3|

  28. Which one of the points 10 − 8i, 11+ 6i is closest to 1 + i.

  29. Show that the equation \({ z }^{ 3 }+2\bar { z } =0\) has five solutions

  30. If z = x + iy is a complex number such that \(\left| \frac { z-4i }{ z+4i } \right| =1\) show that the locus of z is real axis.

  31. Find the product \(\frac { 3 }{ 2 } \left( cos\frac { \pi }{ 3 } +isin\frac { \pi }{ 3 } \right) .6\left( cos\frac { 5\pi }{ 6 } +isin\frac { 5\pi }{ 6 } \right) \)in rectangular from

  32. If z = 2−2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when \(\theta =\frac { 2\pi }{ 3 } \).

  33. Find the circle roots of -27.

  34. Show that the complex numbers 3 + 2i, 5i, -3 + 2i and -i form a square.

  35. Find the locus of z if Re\(\\ \left( \frac { \bar { z } +1 }{ \bar { z } -i } \right) \) = 0.

    1. 5 Marks


    7 x 5 = 35
  36. Show that \(\left( \frac { 19+9i }{ 5-3i } \right) ^{ 15 }-\left( \frac { 8+i }{ 1+2i } \right) ^{ 15 }\) is purely imaginary.

  37.  If z = x + iy is a complex number such that Im \(\left( \frac { 2z+1 }{ iz+1 } \right) =0\) show that the locus of z is 2x2+ 2y2+ x - 2y = 0

  38. If \(2cos\alpha=x+\frac { 1 }{ x } \) and \(2cos\ \beta =y+\frac { 1 }{ y } \), show that \({ x }^{ m }{ y }^{ n }+\frac { 1 }{ { x }^{ m }{ y }^{ n } } =2cos(m\alpha +n\beta )\)

  39. If z = x + iy and arg\(\left( \frac { z-1 }{ z+1 } \right) =\frac { \pi }{ 2 } \), then show that x+ y= 1.

  40. Show that \(\left( \frac { i+\sqrt { 3 } }{ -i+\sqrt { 3 } } \right) ^{ 2\omega }+\left( \frac { i-\sqrt { 3 } }{ i+\sqrt { 3 } } \right) ^{ 2\omega }\) = -1

  41. Verify that 2 arg(-1) ≠ arg(-1)2

  42. Verify that arg(1+i) + arg(1-i) = arg[(1+i) (1-i)]

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Complex Numbers Reduced Syllabus Important Questions With Answer Key 2021

Write your Comment