New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Free Online Test 1 Mark Questions 2020 - Part Five

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 00:10:00 Hrs
Total Marks : 10

    Answer all the questions

    10 x 1 = 10
  1. If 0 ≤ θ  ≤ π and the system of equations x + (sinθ)y - (cosθ)z = 0, (cosθ)x - y +z = 0, (sinθ)x + y - z = 0 has a non-trivial solution then θ is

    (a)

    \(\frac { 2\pi }{ 3 } \)

    (b)

    \(\frac { 3\pi }{ 4 } \)

    (c)

    \(\frac { 5\pi }{ 6 } \)

    (d)

    \(\frac { \pi }{ 4 } \)

  2. The solution of the equation |z| - z = 1 + 2i is

    (a)

    \(\frac { 3 }{ 2 } -2i\)

    (b)

    \(-\frac { 3 }{ 2 } +2i\)

    (c)

    \(2-\frac { 3 }{ 2 } i\)

    (d)

    \(2+\frac { 3 }{ 2 } i\)

  3. If x3+12x2+10ax+1999 definitely has a positive zero, if and only if

    (a)

    a ≥ 0

    (b)

    a > 0

    (c)

    a < 0

    (d)

    a ≤ 0

  4. The circle x+ y= 4x + 8y +5 intersects the line 3x−4y = m at two distinct points if

    (a)

    15< m < 65

    (b)

    35< m <85

    (c)

    −85 < m < −35

    (d)

    −35 < m < 15

  5. The values of m for which the line y = mx + \(2\sqrt { 5 } \) touches the hyperbola 16x− 9y= 144 are the roots of x− (a + b)x − 4 = 0, then the value of (a+b) is

    (a)

    2

    (b)

    4

    (c)

    0

    (d)

    -2

  6. If the volume of the parallelepiped with \(\vec { a } \times \vec { b } ,\vec { b } \times \vec { c } ,\vec { c } \times \vec { a } \)  as coterminous edges is 8 cubic units, then the volume of the parallelepiped with \((\vec { a } \times \vec { b } )\times (\vec { b } \times \vec { c } ),(\vec { b } \times \vec { c } )\times (\vec { c } \times \vec { a } )\) and \((\vec { c } \times \vec { a } )\times (\vec { a } \times \vec { b } )\)as coterminous edges is,

    (a)

    8 cubic units

    (b)

    512 cubic units

    (c)

    64 cubic units

    (d)

    24 cubic units

  7. The point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is 

    (a)

    (4, 11)

    (b)

    (4, -11)

    (c)

    (-4, 11)

    (d)

    (-4,-11)

  8. The value of  \(\int _{ 0 }^{ \pi }{ { sin }^{ 4 }xdx } \) is

    (a)

    \(\frac{3\pi}{10}\)

    (b)

    \(\frac{3\pi}{8}\)

    (c)

    \(\frac{3\pi}{4}\)

    (d)

    \(\frac{3\pi}{2}\)

  9. The integrating factor of the differential equation \(\frac { dy }{ dx } +y=\frac { 1+y }{ \lambda } \) is

    (a)

    \(\frac { x }{ { e }^{ \lambda } } \)

    (b)

    \(\frac { { e }^{ \lambda} }{ x } \)

    (c)

    \({ \lambda e }^{ x }\)

    (d)

    ex

  10. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

    (a)

    i + 2n, i = 0,1,2... n

    (b)

    2i- n, i = 0,1,2... n

    (c)

    n - i, i = 0,1,2... n

    (d)

    2i + 2n, i = 0, 1, 2...n

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Free Online Test 1 Mark Questions 2020 - Part Five

Write your Comment