New ! Maths MCQ Practise Tests



Important 5 Mark Creative Questions (New Syllabus) 2020

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 105

    Part A

    21 x 5 = 105
  1. For what value of λ, the system of equations x + y + z = 1, x + 2y + 4z = λ, x + 4y + 10z = λ2 is consistent.

  2. Find all the roots \((2-2i)^{ \frac { 1 }{ 3 } }\) and also find the product of its roots.

  3. If c ≠ 0 and \(\frac { p }{ 2x } =\frac { a }{ x+x } +\frac { b }{ x-c } \) has two equal roots, then find p. 

  4. Simplify \({ sin }^{ -1 }\left( \frac { sinx+cosx }{ \sqrt { 2 } } \right) ,\frac { \pi }{ 4 }\) 

  5. The foci of a hyperbola coincides with the foci of the ellipse \(\frac { { x }^{ 2 } }{ 25 } +\frac { y^{ 2 } }{ 9 } =1\). Find the equation of the hyperbola if its eccentricity is 2.

  6. If \(\left| \overset { \rightarrow }{ A } \right| =\overset { \wedge }{ i } +\overset { \wedge }{ j } +\overset { \wedge }{ k } \) and \(\overset { \wedge }{ i } =\overset { \wedge }{ j } -\overset { \wedge }{ k } \) are two given vector, then find a vector B satisfying the equations \(\overset { \rightarrow }{ A } \times \overset { \rightarrow }{ B } \)\(\overset { \rightarrow }{ C } \) and \(\overset { \rightarrow }{ A } \).\(\overset { \rightarrow }{ B } \) = 3

  7. Find the angle of intersection of the curves 2y2 = x3 and y2 = 32x.

  8. If the curves 4x=y2 and 4xy=k cut at right angles show that k2=512.

  9. Find the local maximum and local minimum values for f(x)=12x2-2x2-x4.

  10. Find \(\frac { \partial f }{ \partial x } ,\frac { \partial f }{ \partial y } ,\frac { { \partial }^{ 2 }f }{ \partial { x }^{ 2 } } ,\frac { { \partial }^{ 2 }f }{ { \partial y }^{ 2 } } \)  at x = 2, y = 3 if f(x,y) = 2x2 + 3y2 - 2xy

  11. Find \(\frac { \partial w }{ \partial u } ,\frac { \partial w }{ \partial v } \) if w=sin-1(x,y) where x=u+v,y=u-v

  12. Show that the area under the curve y = sin x and y = sin 2x between x = 0 and x = \(\frac { \pi }{ 3 } \) and x axis are as 2:3

  13. Find the area of the loop of the curve 3ay2=x(x-a)2

  14. Show that the ratio of the area under the curve y=sinx and y=sin2x between x=0 and \(x=\frac { \pi }{ 3 } \) and x- axis are as 2 : 3.

  15. The surface area of a balloon being inflated changes at a constant rate. If initially, its radius 3 units and after 2 seconds it is 5 units, find the radius after t seconds.

  16. Sovle : (x+y+1)2dy=dx,y(-1)=0

  17. Construct the truth table for (p ∧ q) v r.

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Important 5 Mark Creative Questions (New Syllabus) 2020

Write your Comment