New ! Maths MCQ Practise Tests



12th Standard Maths English Medium Inverse Trigonometric Functions Reduced Syllabus Important Questions 2021

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 100

      Multiple Choice Questions


    15 x 1 = 15
  1. If \(\cot ^{-1} x=\frac{2 \pi}{5}\) for some x \(\in\) R, the value of tan-1 x is

    (a)

    \(-\frac{\pi}{10}\)

    (b)

    \(\frac{\pi}{5}\)

    (c)

    \(\frac{\pi}{10}\)

    (d)

    \(-\frac{\pi}{5}\)

  2. The domain of the function defined by \(f(x)=\sin ^{-1} \sqrt{x-1}\) is

    (a)

    [1, 2]

    (b)

    [-1, 1]

    (c)

    [0, 1]

    (d)

    [-1, 0]

  3. If |x| \(\le\) 1, then 2 tan-1 x-sin-1\(\frac{2x}{1+x^2}\) is equal to

    (a)

    tan-1x

    (b)

    sin-1x

    (c)

    0

    (d)

    \(\pi\)

  4. The equation \(\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)has

    (a)

    no solution

    (b)

    unique solution

    (c)

    two solutions

    (d)

    infinite number of solutions

  5. If \({ tan }^{ -1 }\left\{ \cfrac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right\} =\alpha \) then x2 = _____________

    (a)

    \(sin2\alpha \)

    (b)

    \(sin\alpha \)

    (c)

    \(cos2\alpha \)

    (d)

    \(cos\alpha \)

  6. The number of solutions of the equation \({ tan }^{ -1 }2x+{ tan }^{ -1 }3x=\frac { \pi }{ 4 } \) ____________

    (a)

    2

    (b)

    3

    (c)

    1

    (d)

    none

  7. If \(\alpha ={ tan }^{ -1 }\left( \frac { \sqrt { 3 } }{ 2y-x } \right) ,\beta ={ tan }^{ -1 }\left( \frac { 2x-y }{ \sqrt { 3y } } \right) \) then \(\alpha -\beta \) __________

    (a)

    \(\frac { \pi }{ 6 } \)

    (b)

    \(\frac { \pi }{ 3 } \)

    (c)

    \(\frac { \pi }{ 2 } \)

    (d)

    \(\frac { -\pi }{ 3 } \)

  8. \({ tan }^{ -1 }\left( \frac { 1 }{ 4 } \right) +{ tan }^{ -1 }\left( \frac { 2 }{ 11 } \right) \) = ____________

    (a)

    0

    (b)

    \(\frac { 1 }{ 2 } \)

    (c)

    -1

    (d)

    none

  9. If \({ tan }^{ -1 }\left( \frac { x+1 }{ x-1 } \right) +{ tan }^{ -1 }\left( \frac { x-1 }{ x } \right) ={ tan }^{ -1 }\left( -7 \right) \) then x is ___________

    (a)

    0

    (b)

    -2

    (c)

    1

    (d)

    2

  10. If \({ cos }^{ -1 }x>x>{ sin }^{ -1 }x\) then _________

    (a)

    \(\cfrac { 1 }{ \sqrt { 2 } }

    (b)

    \(0\le x<\frac { 1 }{ \sqrt { 2 } } \)

    (c)

    \(-1\le x<\frac { 1 }{ \sqrt { 2 } } \)

    (d)

    x>0

  11. The domain of cos-1(x2 - 4) is______

    (a)

    [3, 5]

    (b)

    [-1, 1]

    (c)

    \(\left[ -\sqrt { 5 } ,-\sqrt { 3 } \right] \cup \left[ \sqrt { 3 } ,\sqrt { 5 } \right] \)

    (d)

    [0, 1]

  12. The value of tan \(\left( { cos }^{ -1 }\frac { 3 }{ 5 } +{ tan }^{ -1 }\frac { 1 }{ 4 } \right) \) is ______

    (a)

    \(\frac { 19 }{ 8 } \)

    (b)

    \(\frac { 8 }{ 19 } \)

    (c)

    \(\frac { 19 }{ 12 } \)

    (d)

    \(\frac { 3 }{ 4 } \)

  13. The value of \({ sin }^{ -1 }\left( cos\frac { 33\pi }{ 5 } \right) \) is________

    (a)

    \(\frac { 3\pi }{ 5 } \)

    (b)

    \(\frac { -\pi }{ 10 } \)

    (c)

    \(\frac { \pi }{ 10 } \)

    (d)

    \(\frac { 7\pi }{ 5 } \)

  14. If x < 0, y < 0 such that xy = 1, then tan-1(x) + tan-1(y) =_____

    (a)

    \(\frac { \pi }{ 2 } \)

    (b)

    \(\frac { -\pi }{ 2 } \)

    (c)

    \(-\pi \)

    (d)

    none

  15. The pricipal value of \({ sin }^{ -1 }\left( \frac { -1 }{ 2 } \right) \) is _________

    (a)

    \(\frac { \pi }{ 6 } \)

    (b)

    \(\frac { -\pi }{ 6 } \)

    (c)

    \(\frac { \pi }{ 3 } \)

    (d)

    \(\frac { -\pi }{ 3 } \)

    1. 2 Marks


    10 x 2 = 20
  16. Find the principal value of sin-1\(\left( -\frac { 1 }{ 2 } \right) \)(in radians and degrees).

  17. Find the period and amplitude of y = sin 7x

  18. State the reason for cos-1\([cos(-\frac{\pi}{6})]\neq \frac{\pi}{6}.\)

  19. Find the value of
    \(2{ cos }^{ -1 }\left( \frac { 1 }{ 2 } \right) +{ sin }^{ -1 }\left( \frac { 1 }{ 2 } \right) \)

  20. Find the value of 
    \(sin\left[ \frac { \pi }{ 3 } -{ sin }^{ -1 }\left( -\frac { 1 }{ 2 } \right) \right] \)

  21. Find all values of x such that
    -5\(\pi\le x \le 5\pi\) and cos x =1

  22. Find the principal value of sin-1(-1).

  23. If \({ cot }^{ -1 }\left( \frac { 1 }{ 7 } \right) =\theta \) find the value of cos \(\theta \)

  24. Evaluate \(sin\left( { cos }^{ -1 }\left( \frac { 3 }{ 5 } \right) \right) \)

  25. Prove that \(2{ tan }^{ -1 }\left( \frac { 2 }{ 3 } \right) ={ tan }^{ -1 }\left( \frac { 12 }{ 5 } \right) \)

    1. 3 Marks


    10 x 3 = 30
  26. Find the domain of sin−1(2−3x2)

  27. Find the domain of cos-1\((\frac{2+sinx}{3})\)

  28. Find tan(tan-1(2019))

  29. Find the value of tan−1(−1 ) + cos-1\((\frac{1}{2})+sin^-1(-\frac{1}{2})\)

  30. Solve \({ sin }^{ -1 }\frac { 5 }{ x } +{ sin }^{ -1 }\frac { 12 }{ x } =\frac { \pi }{ 2 } \)

  31. Find the number of solution of the equation tan-1(x-1) +  tan-1x + tan-1(x + 1) = tan-1(3x)

  32. Find the domain of
    g(x) = sin−1x + cos−1x

  33. Find the value of
    \(cot\left( { sin }^{ -1 }\frac { 3 }{ 5 } +{ sin }^{ -1 }\frac { 4 }{ 5 } \right) \)

  34. Prove that \({ cos }^{ -1 }\left( \frac { 4 }{ 5 } \right) +{ tan }^{ -1 }\left( \frac { 3 }{ 5 } \right) ={ tan }^{ -1 }\left( \frac { 27 }{ 11 } \right) \)

  35. Solve: cos(tan-1x) = \(sin\left( { cot }^{ -1 }\frac { 3 }{ 4 } \right) \) 

    1. 5 Marks


    7 x 5 = 35
  36. Find the principal value of cos−1\(\left( \frac { \sqrt { 3 } }{ 2 } \right) \)

  37. Find the principal value of cosec−1(−1)

  38. Find the principal value of
    sec−1(−2).

  39. Find the domain of the following functions
    (i) f(x) = sin-1(2x - 3)
    (ii) f(x) = sin-1x + cos x

  40. Write the function \(f(x)=\tan ^{-1} \sqrt{\frac{a-x}{a+x}}-a<x<a \) in the simplest form

  41. If \({ tan }^{ -1 }\left( \frac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right) =a\) than prove that x= sin 2a

  42. Prove that \({ tan }^{ -1 }\left( \frac { 1-x }{ 1+x } \right) -{ tan }^{ -1 }\left( \frac { 1-y }{ 1+y } \right) ={ sin }^{ -1 }\left( \frac { y-x }{ \sqrt { 1+{ x }^{ 2 } } .\sqrt { 1+{ y }^{ 2 } } } \right)\)

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Inverse Trigonometric Functions Reduced Syllabus Important Questions 2021

Write your Comment