New ! Maths MCQ Practise Tests



Model 5 Mark Creative Questions (New Syllabus) 2020

12th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 115

    Part A

    23 x 5 = 115
  1. Solve: \(\frac { 2 }{ x } +\frac { 3 }{ y } +\frac { 10 }{ z } =4,\frac { 4 }{ x } -\frac { 6 }{ y } +\frac { 5 }{ z } =1,\frac { 6 }{ x } +\frac { 9 }{ y } -\frac { 20 }{ z } \) = 2

  2. Verify that arg(1+i) + arg(1-i) = arg[(1+i) (1-i)]

  3. If a, b, c, d and p are distinct non-zero real numbers such that (a2+b2+c2) p2-2 (ab+bc+cd) p+(b2+c2+d2)≤ 0 then prove that a, b, c, d are in G.P and ad = bc

  4. If \({ tan }^{ -1 }\left( \frac { \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1-{ x }^{ 2 } } }{ \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1-{ x }^{ 2 } } } \right) =a\) than prove that x= sin 2a

  5. A kho-kho player In a practice session while running realises that the sum of tne distances from the two kho-kho poles from him is always 8m. Find the equation of the path traced by him of the distance between the poles is 6m.

  6. ABCD is a quadrilateral with \(\overset { \rightarrow }{ AB } =\overset { \rightarrow }{ \alpha } \) and \(\overset { \rightarrow }{ AD } =\overset { \rightarrow }{ \beta } \) and \(\overset { \rightarrow }{ AC } =2\overset { \rightarrow }{ \alpha } +3\overset { \rightarrow }{ \beta } \). If the area of the quadrilateral is λ times the area of the parallelogram with \(\overset { \rightarrow }{ AB } \) and \(\overset { \rightarrow }{ AD } \) as adjacent sides, then prove that \(\lambda =\frac { 5 }{ 2 } \)

    A PHP Error was encountered

    Severity: Warning

    Message: A non-numeric value encountered

    Filename: material/details.php

    Line Number: 1002

    ()

    plane

  7. Show that the curves 4x = y2 and 4xy = k cut at right angles if k2 = 512.

  8. If the curves 4x=y2 and 4xy=k cut at right angles show that k2=512.

  9. Find the intervals for which the function f(x)=2x2-9x2-12x+1 is increasing or decfreasing and find the local extermems.

  10. Find the local maximum and local minimum values of f(x)=x4-3x+3x2-x.

  11. Using differential find the approximate value of cos 61; if it is given that sin 60° = 0.86603 and 10 = 0.01745 radians.

  12. Find \(\frac { \partial w }{ \partial u } ,\frac { \partial w }{ \partial v } \) if w=sin-1(x,y) where x=u+v,y=u-v

  13. Using integration, find the area of the triangle with sides y = 2x + 1, y = 3x + 1 and x = 4.

  14. Find the area of the loop of the curve 3ay2=x(x-a)2

  15. Find the area of the region bounded by a2y2=a2(a2-x2)

  16. Find the area bounded by the curve y2(2a-x)=x2 and the line x=2a.

  17. Solve: \(\frac { dy }{ dx } \) = (3x+2y+1)2

  18. Solve :(x2+xy)dy=(x2+y2)dx

  19. Verify (p ∧ ~p) ∧ (~q ∧ p) is a tautlogy, contradiction or contingency.

*****************************************

Reviews & Comments about 12th Standard Maths English Medium Model 5 Mark Creative Questions (New Syllabus) 2020

Write your Comment